NDM-1 抑制剂筛选平台建立及 120 种中药材抑制活性评价

徐佳楠, 马东娃, 苟强强, 赵 雪, 王文娣, 杜文韬, Omer Hassan Ali Hassan, 冯再平, 张新国*

(兰州理工大学生命科学与工程学院,甘肃省中藏药筛选评价及深加工重点实验室,甘肃 兰州 730050)

摘要:目的 建立新德里金属 b-内酰胺酶 (NDM-1) 抑制剂筛选平台,并以其评价 120 种中药材抑制活性。方法 以NDM-1 为催化酶,美罗培南为反应底物,EDTA-2Na 为阳性对照,紫外-可见分光光度法检测反应体系吸光度随时间的变化,计算各中药材对 NDM-1 的抑制作用,并优化底物质量浓度、酶浓度、温度、pH、有机溶剂、反应时间。结果 最佳体系为底物质量浓度 0.16 mg/mL,酶浓度 800 U/mL,检测波长 298 nm,温度 25 ℃,检测时间 300 s,PBS 或体积分数 10%以下的甲醇或 DMSO 作为溶剂。在 120 种中药材中,有 16 种抑制率在 60% ~80% 之间,占比 13.33%;4 种抑制率大于 80%,分别为夏枯草(85.11%)、秦艽(87.32%)、石榴皮(89.11%)、岗稔根(91.39%),占比 3.33%。结论 该方法稳定可靠,可用于 NDM-1 抑制剂的筛选。中药材是抗耐药菌感染药物的重要来源。

关键词:中药材;新德里金属 b-内酰胺酶 (NDM-1) 抑制剂;筛选平台;抑制活性;抗耐药菌感染;紫外-可见分光光度法

中图分类号: R284.1 文献标志码: B 文章编号: 1001-1528(2025)10-3497-06

doi:10.3969/j.issn.1001-1528.2025.10.049

抗生素的长期广泛使用导致细菌耐药问题日趋严重^[1],已成为威胁人类健康的重大挑战。b-内酰胺类因其优良的抗菌活性和选择性,成为目前使用最广泛的一类抗生素^[2],但细菌耐药性也随之出现^[3]。研究显示,它能水解药物中的 b-内酰胺环而使药物失活,是细菌耐药的重要机制^[4],根据氨基酸序列可分为 A、B、C、D(Ambler分类)^[5]。

新德里金属 b-内酰胺酶(NDM-1)于 2009 年被首次发现,属于 B 类 b-内酰胺酶^[6],并且所产生的微生物被称为"超级细菌"^[7],在全球范围内流行并引发多种感染^[8]。它具有广谱底物范围,能水解几乎所有的 b-内酰胺类抗生素,但现有的相关抑制剂(如舒巴坦等)对其无效^[9]。目前,尽管有较多关于 NDM-1 抑制剂的研究^[10],但真正有效并能用于临床者仍缺失^[8]。

研究表明,许多天然化合物(如酚类、黄酮类、生物碱类等)具有增强 b-内酰胺类抗生素对耐药细菌抑制作用的潜力[11],故在中药中筛选出有效的 NDM-1 抑制剂以应对由耐药菌引起的临床感染具有重要意义。本实验建立了一种便捷、高效、稳定的 NDM-1 抑制剂筛选方法,并应用于120种中药材抑制活性的评价中,以期为挖掘抗耐药活

性物质提供新的思路和依据。

1 材料

1.1 仪器、试剂与药材 UV2102PC 型紫外可见分光光度 计 [尤尼柯(上海)仪器有限公司]。美罗培南(MEM) (上海阿拉丁生化科技股份有限公司); NDM-1(杭州北望 生物技术有限公司)。中药材共120种,均购于甘肃省兰州 市黄河药材市场,经兰州理工大学生命科学与工程学院杨 林副教授鉴定为正品,具体见表1。Na₂HPO₄、KH₂PO₄、 甲醇、DMSO、EDTA-2Na等试剂均为分析纯。

1.2 溶液 PBS 缓冲液 [即 50 mmol/L 磷酸盐缓冲液 (pH=7), 4 ℃保存];底物溶液 (准确称取美罗培南 10 mg, PBS 缓冲液制成 0.2 mg/mL 溶液, 4 ℃保存); 酶溶液 (准确称取 NDM-1 10 mg, PBS 缓冲液制成 1.0 mg/mL 溶液, 4 ℃保存); EDTA-2Na (准确称取 EDTA-2Na 10 mg,制成 1.0 mg/mL 溶液, 4 ℃保存)。

2 方法

2.1 水提物制备 称取 120 种中药材各 100 g, 粉碎,按料液比1:5加入蒸馏水,水浴回流提取1h,共3次,趁热过滤,合并滤液,减压浓缩,置于50℃烘箱中干燥至恒重,即得,充分研磨成粉末备用。

收稿日期: 2025-03-05

基金项目: 国家自然科学基金 (32160021); 甘肃省重点研发计划项目 (22YF7NA176); 甘肃省自然科学基金 (23JRRA792); 温州市科技局项目 (2022Y0883)

作者简介: 徐佳楠 (2000—), 女, 硕士生, 研究方向为中药活性成分分离鉴定。Tel: 15193694819, E-mail: 15193694819@163.com * 通信作者: 张新国 (1972—), 男, 博士, 教授, 研究方向为中药发酵、微生物新药。Tel: (0931) 2976001, E-mail: biodrug@163.com

表 1 中药材信息

	衣 1 中约例信息							
名称	所属科名	使用部位	名称	所属科名	使用部位	名称	所属科名	使用部位
半枝莲	唇形科	干燥全草	凤尾草	凤尾蕨科	全草	青藏龙胆	龙胆科	花
八角茴香	木兰科	干燥成熟果实	桑椹	桑科	干燥果穗	当归	伞形科	干燥根
刀豆	豆科	干燥成熟种子	老鹳草	牻牛儿苗科	干燥地上部分	西红花	鸢尾科	干燥柱头
白前	萝藦科	干燥根茎和根	橘红	芸香科	干燥外层果皮	党参	桔梗科	干燥根
秦艽	龙胆科	干燥根	桔梗	桔梗科	干燥根	石榴皮	石榴科	干燥果皮
椿皮	苦木科	干燥根皮或干皮	益智仁	姜科	干燥成熟果实	芦荟	百合科	浓缩干燥物
山药	薯蓣科	干燥根茎	木贼	木贼科	干燥地上部分	灵芝	多孔菌科	干燥子实体
绵萆薢	薯蓣科	干燥根茎	荷叶	睡莲科	干燥叶	白花蛇舌草	茜草科	全草
山楂	蔷薇科	干燥成熟果实	升麻	毛茛科	干燥根茎	杜仲叶	杜仲科	干燥叶
通草	五加科	干燥茎髓	莱菔子	十字花科	干燥成熟种子	白及	兰科	干燥块茎
火麻仁	桑科	干燥成熟果实	山慈菇	兰科	干燥假鳞茎	黄芩	唇形科	干燥根
地肤子	藜科	干燥成熟果实	合欢皮	豆科	干燥树皮	苏木	豆科	干燥心材
大蓟	菊科	干燥地上部分	茯神	多孔菌科	干燥菌核松根白色部分	赤芍	毛茛科	干燥根
白果	银杏科	干燥成熟种子	厚朴	木兰科	干燥干皮、根皮	乌头	毛茛科	干燥块根
柠檬	芸香科	干燥成熟果实	紫苏籽	唇形科	干燥成熟果实	重楼	百合科	干燥根茎
龙眼肉	无患子科	假种皮	天花粉	葫芦科	干燥根	穿山龙	薯蓣科	干燥根茎
决明子	豆科	干燥成熟种子	葛根	豆科	干燥根	红景天	景天科	干燥根和根茎
败酱草	十字花科	干燥全草	女贞子	木犀科	干燥成熟果实	红藤	木通科	干燥藤茎
肉桂	樟科	干燥树皮	菊花	菊科	干燥头状花序	半枫荷	金缕梅科	根或茎枝
余甘子	大戟科	干燥成熟果实	黑芝麻	脂麻科	干燥成熟种子	阿尔泰狗娃花	菊科	根、花或全草
冬葵果	锦葵科	干燥成熟果实	白芍	毛茛科	干燥根	牛蒡子	菊科	成熟果实
佛手	芸香科	干燥果实	黄精	百合科	干燥根茎	菟丝子	旋花科	干燥成熟种子
甘遂	大戟科	干燥块根	榆树皮	榆科	干燥树皮或根皮	楮实子	桑科	干燥成熟果实
芡实	睡莲科	干燥成熟种仁	陆英	忍冬科	干燥茎叶	番泻叶	干燥小叶	干燥叶
没药	橄榄科	干燥树脂	蒲公英	菊科	干燥全草	络石藤	夹竹桃科	干燥带叶藤茎
骆驼蓬	蒺藜科	干燥全草	榧子	红豆杉科	干燥成熟种子	金荞麦	蓼科	干燥根茎
罗汉果	葫芦科	干燥果实	延胡索	罂粟科	干燥块茎	王不留行	石竹科	干燥成熟种子
侧柏叶	柏科	干燥枝梢和叶	谷精草	谷精草科	干燥带花茎的头状花序	地锦草	大戟科	干燥全草
沙苑子	豆科	干燥成熟种子	鲜白茅根	禾本科	干燥根茎	蝴蝶果	大戟科	果实
白术	菊科	干燥根茎	半边莲	桔梗科	干燥全草	枳椇子	鼠李科	成熟种子
秦皮	木犀科	干燥枝皮或干皮	藿香	唇形科	干燥地上部分	川木通	毛茛科	干燥藤茎
金银花	忍冬科	干燥花蕾或初开的花	薄荷	唇形科	干燥地上部分	银柴胡	石竹科	干燥根
防己	防己科	干燥根	车前子	车前科	干燥成熟种子	青皮	芸香科	干燥幼果
鱼腥草	三百草科	新鲜全草	覆盆子	蔷薇科	干燥果实	岗稔根	桃金娘科	干燥根
苍耳子	菊科	干燥成熟果实	丹参	唇形科	干燥根和根茎	柏子仁	柏科	干燥成熟种仁
薰衣草	唇形科	干燥叶和花	山银花	忍冬科	干燥花蕾或带初开的花	卷柏	卷柏科	干燥全草
枳椇子	鼠李科	成熟种子	吴茱萸	芸香科	干燥近成熟果实	桑白皮	桑科	干燥根皮
莪术	姜科	干燥根茎	石刁柏	百合科	幼茎	川木香	菊科	干燥根
栀子	茜草科	干燥成熟果实	钩丁	茜草科	带钩或不带钩的茎枝	荆芥	唇形科	干燥地上部分
威灵仙	毛茛科	干燥根和根茎	夏枯草	唇形科	干燥果穗	葶苈子	十字花科	干燥成熟种子

- 2.2 检测波长筛选 底物美罗培南在 NDM-1 型 b-内酰胺酶的作用下生成相应产物,美罗培南中的 b-内酰胺环被水解破坏^[12],导致其吸光度发生改变。本实验基于上述原理,将 0.16 mg/mL 美罗培南底物溶液加到 400 U/mL NDM-1型 b-内酰胺酶溶液中,混匀,完全反应后全波长扫描记录底物、产物特征吸收峰,绘制图谱,筛选出干扰最小者。2.3 酶浓度筛选 设置反应总体系 300 μL,依次加入 PBS缓冲液,200、400、600、800、1 000、1 200、1 400、1 600、1 800 U/mL NDM-1溶液,0.2 mg/mL 美罗培南溶液各 100 μL,采用紫外分光光度计测定在 298 nm 波长处600 s内吸光度,计算酶促反应初速率 K 和线性相关系数 R²,确定最适酶浓度。
- 2.4 底物质量浓度筛选 固定酶浓度 800 U/mL,反应体系不变,设定美罗培南质量浓度分别为 0.10、0.12、0.14、0.16、0.18、0.20 mg/mL,按"2.3"项下方法测定吸光度,确定最适底物质量浓度。
- 2.5 反应时间筛选 固定酶浓度 800 U/mL, 美罗培南质量浓度 0.16 mg/mL, 反应体系不变, 依次加入 PBS 缓冲液、NDM-1 溶液各 100 μ L, 最后加入 100 μ L 美罗培南溶液启动反应, 按 "2.3" 项下方法测定吸光度, 确定最适反应时间。
- 2.6 反应温度筛选 固定酶浓度 800 U/mL, 美罗培南质量浓度 0.16 mg/mL, 反应体系不变, 分别在 10、15、20、25、30、35、40 ℃下孵育 15 min 后, 最后加入美罗培南溶

液启动反应,按"2.3"项下方法测定吸光度,确定最适反应温度。

- 2.7 反应 pH 筛选 固定酶浓度 800 U/mL, 美罗培南质量浓度 0.16 mg/mL, 反应体系不变, 调节 PBS 缓冲液 pH 分别为 6.0、6.5、7.0、7.5、8.0, 按"2.3"项下方法测定吸光度, 确定最适反应 pH。
- 2.8 有机溶剂筛选 固定反应体系不变,取5%、10%、30%、50%、70%甲醇,甲醇,DMSO,丙酮各100 μL代替PBS缓冲液,以PBS缓冲液为对照,按"2.3"项下方法测定吸光度,确定最适有机溶剂。
- 2.9 验证试验 在反应体系中加入 NDM-1 酶溶液及 0.1、 0.2、0.4、0.6、0.8、1.0 mg/mL EDTA-2Na 溶液各 100 μ L, 在 25 ℃下孵育 10 min,加入 100 μ L 0.16 mg/mL 美罗培南溶液启动反应,按 "2.3" 项下方法测定吸光度。以时间为横坐标,吸光度为纵坐标进行回归,计算抑制率 I,公式为 $I=[(K_0-K_1)/K_0]\times 100\%$,其中 K_0 为酶速率回归方程斜率, K_1 为样品回归方程斜率^[13]。
- 2.10 NDM-1 抑制剂筛选平台评价
- 2.10.1 稳定性 确定最优条件后,按 "2.3"项下方法测定 300 s内 EDTA-2Na 抑制率,在不同时间点每天连续进行 6次,按 "2.9"项下方法计算抑制率。
- 2.10.2 S/N、S/B、Z 计算信号与噪音比值 (S/N)、信号与背景比值 (S/B)、仪器和人为相关的随机误差引起的 扰 动 因 子 $(Z')^{[14-16]}$,公 式 分 别 为 S/N = 阳性对照平均值—阴性对照平均值 S/B 医性对照平均值 阴性对照平均值 阴性对照平均值

Z'=1-3×阳性对照标准偏差+3×阴性对照标准偏差 阳性对照平均值-阴性对照平均值

3 结果

- 3.1 检测波长筛选 由图 1 可知,与 NDM-1 反应前后,组成体系中底物、产物特征吸收峰分别出现,其中前者在206、298 nm 波长处的底物有特征吸收,而后者在206 nm 左右处出现。为了避免吸光度相互干扰而影响结果准确性,本实验选择298 nm 作为检测波长。
- 3.2 酶浓度筛选 由表 2 可知,当底物质量浓度不变时,酶促反应初速率 K 先随着 NDM-1 浓度增加而不断升高,为 800 U/mL 时呈现较好的线性关系,而高于 1 400 U/mL 时虽然酶促反应初速率更高,但线性关系反而较差,故选择

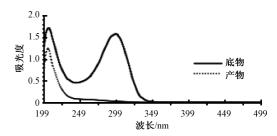


图 1 底物、产物全波长扫描图

表 2 不同酶浓度对酶促反应体系的影响 $(\bar{x}\pm s)$

序号	底物质量浓度/	NDM-1/	K	R^2	
	$(mg\!\cdot\!mL^{-1})$	$(U\!\cdot\! mL^{-1})$	Λ		
1	0. 2	200	-0.001 2±0.002 5	0. 985 2±0. 014 4	
2	0. 2	400	-0.003 5±0.000 2	0.999 2±0.001 1	
3	0. 2	600	-0.006 5±0.000 1	0.999 8±0.000 1	
4	0. 2	800	-0.013 1±0.000 3	0.998 9±0.000 6	
5	0. 2	1 000	-0.012 3±0.002 3	0.996 7±0.000 4	
6	0. 2	1 200	-0.011 9±0.001 7	0. 998 5±0. 001 2	
7	0. 2	1 400	-0.016 0±0.001 7	0.985 9±0.001 6	
8	0. 2	1 600	-0. 336 5±0. 546 9	0. 971 7±0. 003 5	
9	0. 2	1 800	-0.020 9±0.000 7	0. 939 7±0. 024 4	

800 U/mL 作为最适酶浓度。

3.3 底物质量浓度筛选 由表 3 可知, 当 NDM-1 浓度不变时, K 随着底物质量浓度增加不断升高, 为 0.16 mg/mL 时达到最大值, 线性关系也较好, 故选择 0.16 mg/mL 作为最适底物质量浓度。

表 3 不同底物质量浓度对酶促反应体系的影响 $(\bar{x}\pm s)$

-	序号	底物质量浓度/	NDM-1/	V	R^2	
庁亏	$(mg\!\cdot\!mL^{-1})$	$(U\!\cdot\! mL^{-1})$	K	K-		
	1	0. 10	800	-0.008 4±0.000 5	0. 996 4±0. 001 1	
	2	0. 12	800	-0.009 1±0.000 7	0. 998 0±0. 000 6	
	3	0. 14	800	-0.009 4±0.000 8	0. 999 0±0. 000 4	
	4	0. 16	800	-0.009 5±0.000 9	0. 999 5±0. 000 3	
	5	0. 18	800	-0.008 5±0.000 8	0. 999 7±0. 000 4	
	6	0. 20	800	-0.009 0±0.000 5	0. 999 8±0. 000 3	
-						

3.4 反应时间筛选 由表 4 可知, NDM-1 浓度为 800 U/mL, 底物质量浓度为 0.16 mg/mL 时, 300 s 内线性关系较好, K稳定,产物等因素对酶活性的反馈抑制较小,考虑到酶促反应的稳定性及样品的筛选效率,最终选择 300 s 作为最适反应时间。

表 4 不同反应时间对酶促反应体系的影响 $(\bar{x}\pm s)$

序号	底物质量浓度/(mg·mL ⁻¹)	NDM-1/(U·mL ⁻¹)	反应时间/s	K	R^2
1	0. 16	800	120	-0.009 6±0.000 6	0. 999 3±0. 000 4
2	0. 16	800	180	-0.009 4±0.000 2	0. 999 5±0. 000 4
3	0. 16	800	300	-0.009 7±0.000 1	0. 999 5±0. 000 4
4	0. 16	800	420	-0.009 2±0.000 1	0. 999 4±0. 000 4
5	0. 16	800	600	-0.0089 ± 0.0004	0.999 2±0.000 4

3.5 反应温度筛选 由表 5 可知,在温度 15~45 ℃范围内线性关系较好,为 25 ℃时酶活性最高,与文献 [17] 报道 一致,故选择 25 ℃作为最适反应温度。

3.6 反应 pH 筛选 由表 6 可知,在 pH 6.0~8.0 范围内 酶活性良好,为 7.0 时达到最大值,与文献 [18] 报道一致,并且 K 最高,线性关系最好,故选择 pH 7.0 作为最适

表 5 不同反应温度对酶促反应体系的影响 $(\bar{x}\pm s)$

序号	底物质量浓度/(mg·mL-1)	NDM-1/(U·mL ⁻¹)	反应温度/℃	K	R^2
1	0. 16	800	15	-0.008 3±0.000 5	0. 999 3±0. 000 1
2	0. 16	800	20	-0.009 6±0.001 0	0. 999 4±0. 000 4
3	0. 16	800	25	-0.010 5±0.000 5	0. 999 4±0. 000 1
4	0. 16	800	30	-0.009 6±0.001 1	0. 996 3±0. 000 1
5	0. 16	800	35	-0.009 1±0.000 7	0.999 2±0.000 5
6	0. 16	800	40	-0.008 9±0.001 0	0. 998 2±0. 000 3
7	0. 16	800	45	-0.009 1±0.000 3	0. 997 3±0. 000 4

表 6 不同反应 pH 对酶促反应体系的影响 $(\bar{x}\pm s)$

序号	底物质量浓度/(mg·mL ⁻¹)	$NDM-1/(U \cdot mL^{-1})$	反应 pH	K	R^2
1	0. 16	800	6. 0	-0.007 9±0.000 1	0.999 6±0.000 3
2	0. 16	800	6. 5	-0.007 5±0.000 8	0.9989 ± 0.0007
3	0. 16	800	7. 0	-0.008 6±0.000 2	0.999 2±0.000 3
4	0. 16	800	7. 5	-0.007 8±0.000 7	0.998 8±0.000 3
5	0. 16	800	8. 0	-0.008 3±0.000 3	0.998 6±0.000 6

反应 pH。

3.7 不同体积分数溶剂对 NDM-1 抑制率的影响 由表 7 可知,反应体系中不同体积分数甲醇、DMSO、丙酮对 NDM-1 均表现出一定的抑制作用,并且其体积分数越大,对平台影响越大,其中体积分数 10% 以下的 DMSO 或甲醇

对 NDM-1 抑制率较低,影响较小;5% 丙酮抑制率达14.87%,影响较大。另外,虽然 NDM-1 为锌离子依赖型酶,但水中的金属离子对其影响也较小,故选择体积分数10%以下的甲醇或 DMSO 来溶解难溶于 PBS 缓冲液的样品。

表 7 不同体积分数溶剂对 NDM-1 抑制率的影响 $(\bar{x}\pm s)$

序号	体积分数/%			抑制率/%	
分 号	1平4只万致7%	水	甲醇	DMSO	丙酮
1	5	_	0. 10±0. 02	2. 26±0. 04	14. 87±0. 02
2	10	_	5.03 ± 0.03	7. 64 ± 0.03	38. 95±0. 09
3	30	_	16. 21±0. 02	23.01 ± 0.03	100. 03±0. 01
4	50	_	31.66 ± 0.02	37.52 ± 0.03	100. 26±0. 01
5	70	_	49. 62±0. 06	51. 64±0. 02	101.06 ± 0.01
6	100	5. 27±0. 02	100. 94±0. 23	80. 77±0. 02	104. 32±0. 02

3.8 验证试验 由图 2 可知,随着 EDTA-2Na 质量浓度增加抑制率升高,两者线性关系较好,方程为 Y=9.354X+15.031 ($R^2=0.993$ 1) (Y 为抑制率,X 为 EDTA-2Na 质量浓度),在 $0.1\sim1.0$ mg/mL 范围内线性关系良好,并通过GraphPad Prism 软件测得其 IC_{50} 值为 0.38 mg/mL,说明所建立的 NDM-1 抑制剂筛选方法具有较好的可靠性和可行性。另外,EDTA-2Na 质量浓度为 0.6 mg/mL 时,对 NDM-1 的抑制率达 60.57%,故将 0.6 mg/mL 作为阳性对照质量浓度。...。

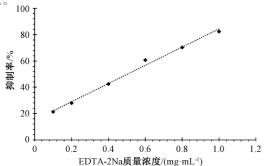


图 2 不同质量浓度 EDTA-2Na 对 NDM-1 抑制率的影响

3.9 NDM-1 抑制剂筛选平台评价

3.9.1 稳定性 在上述优化条件下进行评价,每天平行6次,连续3d,结果见表8,可知变异系数均小于2%,表明该方法重复性良好,反应体系稳定。

表 8 稳定性评价结果 (%, $\bar{x}\pm s$)

序号	第1天	第2天	第3天
1	59. 53	60. 28	62. 69
2	58. 15	59. 43	62. 98
3	60. 16	58. 91	63. 75
4	59. 32	61. 03	60. 93
5	60. 69	59. 52	61. 17
6	59. 53	60. 89	62. 45
平均值	59. 56±0. 86	60. 01±0. 86	62. 33±1. 09
变异系数/%	1.44	1. 43	1. 74

注:变异系数=(标准偏差/平均值)×100%。

3.9.2 S/N、S/B、Z' 本实验测得三者分别为 15.09、6.75、0.63, 而模型的一般要求分别为>10、>3、>0.5 且<1, 即均符合标准, 表明所建立的模型具有较高的可靠性,可用于 NDM-1 抑制剂筛选。

3.10 中药材 NDM-1 抑制活性筛选 由表 9 可知,抑制率低于 40% 中药材的有 81 种,占比 67.5%;抑制率介于 40%~50%的中药材有 9 种,占比 7.5%;抑制率介于50%~60%的中药材有 10 种,占比 8.34%;抑制率介于 60%~70%的中药材有 9 种,占比 7.5%;抑制率介于 70%~80%的中药材有 7 种,占比 5.83%;抑制率大于 80%的中药材有 4 种,分别为夏枯草、秦艽、石榴皮、岗稔根,占比 3.33%,表明中药是 NDM-1 酶抑制剂药物的良好来源。

表 9 中药材 NDM-1 抑制活性筛选结果

	衣》 中:	约例 NDM-1;	ᆥᅄᄱᄱ	1.也4.木	
名称	抑制率/%	名称	抑制率/%	名称	抑制率/%
半枝莲	34. 90	白芍	50. 45	木贼	
八角茴香	42. 27	黄精	32.00	荷叶	_
刀豆	66. 16	榆树皮	63. 91	升麻	61.00
白前	31. 14	陆英	64. 49	莱菔子	_
秦艽	87. 32	蒲公英	42. 16	山慈菇	_
椿皮	39. 11	榧子	17. 63	合欢皮	39. 63
山药	14. 37	延胡索	15. 49	茯神	36. 90
绵萆薢	_	谷精草	52. 63	厚朴	50. 27
山楂	_	鲜白茅根	43. 26	紫苏籽	_
通草	_	半边莲	15. 95	天花粉	64. 23
火麻仁	_	藿香	_	葛根	_
地肤子	15. 22	薄荷	70. 98	女贞子	70. 29
大蓟	_	车前子	44. 05	菊花	22. 69
白果	_	覆盆子	64. 46	黑芝麻	_
柠檬	_	丹参	58. 75	王不留行	36. 50
龙眼肉	23. 79	山银花	39. 49	地锦草	_
决明子	_	吴茱萸	17. 25	蝴蝶果	_
败酱草	33. 29	石刁柏	44. 51	枳椇子	75. 10
肉桂	_	钩丁	78. 39	川木通	_
余甘子	53. 99	夏枯草	85. 11	银柴胡	_
冬葵果	_	青藏龙胆	73. 70	青皮	56. 44
佛手	38. 14	当归	33. 26	岗稔根	91. 39
甘遂	_	西红花	29. 41	柏子仁	26.70
芡实	_	党参	14. 20	卷柏	18.80
没药	_	石榴皮	89. 11	桑白皮	_
骆驼蓬	59. 17	芦荟	55. 02	川木香	_
罗汉果	_	灵芝	15. 53	荆芥	19. 67
侧柏叶	28. 15	白花蛇舌草	11. 29	葶苈子	_
沙苑子	46. 19	杜仲叶	47. 95	楮实子	14. 43
白术	22. 25	白及	26. 27	番泻叶	_
秦皮	20. 68	黄芩	67. 59	络石藤	_
金银花	49. 12	苏木	67. 32	金荞麦	
防己	— 77. 80	赤芍	11. 97	老鹳草	10. 09
鱼腥草 本耳子	77. 80	乌头 香米	6. 74	橘红	_
苍耳子 薰衣草	35. 51 51. 12	重楼 穿山龙	_	桔梗 益智仁	_
無私早 枳椇子	23. 31	タロル 红景天	 55. 27	風管石 凤尾草	60. 27
表术	27. 04	红藤	70. 07	桑棋	-
板子	11. 27	半枫荷	40. 18	牛蒡子	34. 04
威灵仙	33. 70	阿尔泰狗娃花	13. 08	菟丝子	34. 64

注: 一表示无抑制作用或未检测到显著抑制活性。

4 讨论与结论

由于 NDM-1 能水解大多数 b-内酰胺类抗生素,故筛选

高效抑制剂辅助治疗成为对抗耐药细菌的关键^[1921]。本实验以美罗培南为 NDM-1 底物,结合紫外吸收情况选用 298 nm作为反应体系检测波长,可确保反应特征性强且无干扰,能精准用于相关抑制剂筛选。另外,由于 NDM-1 是以金属离子为活性中心的酶^[22],故试剂用高纯水配制以排除水中金属离子干扰,并以已知抑制剂 EDTA 为阳性对照^[23],验证反应体系稳定性。

为了避免待测样品紫外吸收对检测结果的干扰,本实验通过比较其初始、空白吸光度来对有较大变化者进行复筛,并扣除样品本底吸光度,从而保证结果的准确性,再观察底物消耗量与时间的线性关系,以期排除假阳性或假阴性结果,确保筛选结果可靠。在平台优化环节,调整底物、酶浓度以确保前者过量但不产生反馈抑制,避免后者太高而导致反应速率过快或过慢,由于600s内酶促反应线性关系良好,考虑到其稳定性及样品筛选效率,将时间控制在300s内以减少误差。针对样品溶解问题,本实验考察了不同有机溶剂对筛选体系的影响,发现丙酮影响较大,而体积分数低于10%的甲醇和DMSO影响较小,故难溶于PBS缓冲液的样品可用后两者来溶解。

本实验应用上述方法,对 120 种中药材进行 NDM-1 抑制活性评价,筛选出 39 种抑制率高于 40% 者,其中夏枯草、秦艽、石榴皮、岗稔根均大于 80%。鉴于我国中药资源丰富,未来有必要扩大筛选范围,以期挖掘更多高抑制活性者。

综上所述,本实验基于紫外-可见分光光度法对 120 种中药材进行 NDM-1 抑制活性考察,旨在为相关抑制剂筛选提供简便、稳定、高效的检测平台。

参考文献:

- [1] 赵留明, 刘志鑫, 赵国江, 等. β-内酰胺类抗生素的研究进展[J]. 国外医药(抗生素分册), 2018, 39(5): 450-455.
- [2] Rotondo C M, Wright G D. Inhibitors of metallo-β-lactamases [J].Curr Opin Microbiol, 2017, 39: 96-105.
- [3] Docquier J D, Mangani S. An update on β-lactamase inhibitor discovery and development[J]. Drug Resistance Updates, 2018, 36; 13-29.
- [4] Wong D, van Duin D. Novel beta-lactamase inhibitors: Unlocking their potential in therapy[J]. *Drugs*, 2017, 77(6): 615-628.
- [5] Ambler R P, Baddiley J, Abraham E P. The structure of β-lactamases [J]. *Philos T R Soc B*, 1997, 289 (1036); 321-331.
- [6] Wang T, Xu K J, Zhao L Y, et al. Recent research and development of NDM-1 inhibitors[J]. Eur J Med Chem, 2021, 223: 113667.
- [7] 马玉茹,赵红霞,高清志.新德里金属 β-内酰胺酶 NDM-1 的研究进展[J]. 药学学报, 2018, 53(1); 28-36.
- [8] 胡晓丰, 邱少富, 张传福, 等. 产新德里金属 β-内酰胺酶耐药菌感染治疗的研究进展[J]. 生物技术通讯, 2017, 28(2): 162-168.
- [9] 刘 振. 新德里金属 β-内酰胺酶抑制剂的设计、合成与活

Chinese Traditional Patent Medicine

性研究[D]. 青岛: 中国海洋大学, 2015.

- [10] Linciano P, Cendron L, Gianquinto E, et al. Ten years with New Delhi metallo-β-lactamase-1 (NDM-1): From structural insights to inhibitor design[J]. ACS Infect Dis., 2019, 5(1): 9-34.
- [11] 刘海宾. NDM-1 天然产物抑制剂的筛选与体外抗菌活性评价[D]. 哈尔滨: 东北农业大学, 2022.
- [12] Tripathi R, Nair N N. Mechanism of meropenem hydrolysis by New Delhi metallo β-lactamase [J]. Acs Catal, 2015, 5(4): 2577-2586.
- [13] 罗满平, 孟瑛瑛, 李德民, 等. AmpC 酶抑制剂筛选方法的 建立及 136 种中药材活性评价[J]. 中草药, 2023, 54(19): 6351-6361.
- [14] Zhang J H, Chung T D, Oldenburg K R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays [J]. J Biomol Screen, 1999, 4(2): 67-73.
- [15] 王斯文, 陈向东, 汪 辉, 等. β-内酰胺酶抑制剂高通量筛选 模型的建立[J]. 中国抗生素杂志, 2013, 38(2): 102-105.
- [16] 王 颖, 刘忆霜, 李兴华, 等. 新型 NDM-1 酶抑制剂的筛选与研究[J]. 中国抗生素杂志, 2015, 40(6): 401-406.

- [17] Li T, Wang Q, Chen F H, et al. Biochemical characteristics of New Delhi metallo-β-lactamase-1 show unexpected difference to other MBLs[J]. PLoS One, 2013, 8(4): e61914.
- [18] Kim S K, Sims C L, Wozniak S E, et al. Antibiotic resistance in bacteria; novel metalloenzyme inhibitors[J]. Chem Biol Drug Des, 2009, 74(4); 343-348.
- [19] Wei W J, Yang H F, Ye Y, et al. New Delhi metallo-β-lactamase-mediated carbapenem resistance: Origin, diagnosis, treatment and public health concern[J]. Chin Med J (Engl), 2015, 128(14): 1969-1976.
- [20] 赵雨佳,廖湉毅,范培蕾,等. 超级细菌 NDM-1 及其检测方法的研究进展[J]. 化学试剂, 2021, 43(8): 1077-1082.
- [21] 崔 灿,杨海涛,王泽方. NDM-1 结构功能及抑制剂的抑制 机理[J]. 微生物学报,2021,61(1):41-57.
- [22] Sharma S, Sharma S, Singh P P, et al. Potential inhibitors against NDM-1 type metallo-β-lactamases: An overview[J]. Microb Drug Resist, 2020, 26(12): 1568-1588.
- [23] 庞丽,丁蕊,韩静娴.不同浓度乙二胺四乙酸对产 ESBLs 多重耐药肺炎克雷伯菌的体外抗菌活性的影响[J]. 江苏预防医学, 2023, 34(1): 102-104.

基于 QuEChERS-色谱-质谱联用法分析 21 种含人参中成药农药残留状况

郑冠鑫^{1,2}, 苏 建², 袁 浩², 侯晓梦^{2,3}, 石迎梅^{2,4}, 王晓蕾^{2*}, 刘永利^{2*} (1. 河北医科大学,河北 石家庄 050017; 2. 河北省药品医疗器械检验研究院,国家药品监督管理局中药材质量监测评价重点实验室,河北省中药质量评价与标准研究重点实验室,河北 石家庄 050227; 3. 河北大学,河北 保定 071002; 4. 河北中医药大学,河北 石家庄 050200)

摘要:目的 分析 21 种含人参中成药的农药残留状况。方法 样品以 1.0% 乙酸浸泡后乙腈提取,提取液经 QuEChERS 法净化,采用 GC-MS/MS、LC-MS/MS 法筛查农药残留情况,结合农药限量、工艺转移等评价安全性风险。结果 共检出 23 种农药残留,各农药在各自线性范围内线性关系良好 (r>0.990),加样回收率 62.1% ~103.6%,RSD<20%。各中成药农药残留水平较低,1 批人参健脾丸中五氯硝基苯残留量超标,1 批参桂鹿茸丸中甲拌磷超过定量限。结论 21 种中成药整体安全性风险较低,但投料用人参存在五氯硝基苯超标风险,而且从饮片转移到制剂,建议生产企业加强饮片管理以全面提升制剂安全性。

关键词:中成药;人参;农药残留;QuEChERS;GC-MS/MS;LC-MS/MS;安全性

中图分类号: R927.2

文献标志码: B

文章编号: 1001-1528(2025)10-3502-08

doi: 10. 3969/j.issn.1001-1528. 2025. 10. 050

收稿日期: 2025-03-11

基金项目:河北省科技研发平台专项(24462503D);河北省中医药管理局科研计划(2021207)

作者简介: 郑冠鑫 (2000—), 男, 硕士生, 研究方向为中药质量控制。Tel: 18830909016, E-mail: 1196382159@ qq.com

*通信作者:王晓蕾 (1985—),女,硕士,副主任药师,研究方向为中药质量控制。Tel: 18603318068, E-mail: 18603318068@

105.com

刘永利 (1973—), 男, 硕士, 主任药师, 研究方向为中药质量评价及其安全性。Tel: 13932166206, E-mail: liuyongli 2008@126.com