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摘要： 溃疡性结肠炎是一种慢性非特异性炎症性疾病， 发病机制涉及遗传、 环境、 免疫异常、 肠道菌群紊乱等， 全球

发病率持续攀升， 已成为重要公共卫生问题， 现有治疗药物面临疗效不佳、 不良反应显著、 药物依赖等局限性。 中药

活性成分凭借多靶点、 低毒性、 整体调节优势， 在溃疡性结肠炎防治中具有广阔前景。 本文首次系统综述 “免疫⁃炎
症⁃氧化应激” “微生物⁃宿主共代谢” 轴在疾病发生发展中的关键作用， 重点阐述中药黄酮类、 生物碱类、 多糖类、
酚类、 皂苷类等成分通过协同调控免疫应答、 缓解炎症、 改善氧化应激、 重塑肠道菌群、 宿主⁃微生物共代谢过程，
实现对溃疡性结肠炎多靶点、 整体性干预， 并总结了纳米递药系统如脂质体、 外泌体等新兴技术在提高生物利用度、
增强结肠靶向性与治疗效果方面的潜力， 以期为深入理解溃疡性结肠炎的多轴发病机制提供新视角， 也为推进中药多

靶点治疗策略的开发与临床转化提供理论依据。
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　 　 溃疡性结肠炎是一种以结肠黏膜连续性炎症为

特征的慢性疾病， 表现为腹痛、 腹泻、 便血， 在亚

洲、 欧洲、 北美洲的发病率分别已达 ２４􀆰 ３、 ６􀆰 ３、
１９􀆰 ２ 例 ／ １０ 万人［１］， 我国从 １９９０ 年的 １􀆰 ４５ 例 ／ １０
万人升至 ２０１９ 年的 ３􀆰 ６２ 例 ／ １０ 万人， 预计 ２０２５ 年

患者总数将突破 １５０ 万， 已成为重要公共卫生问

题［２］。 当前临床用药 （如氨基水杨酸类、 糖皮质

激素、 生物制剂） 面临疗效不一、 继发感染、 药

物依赖等局限［３］， 亟需开发更安全、 多机制的新

型治疗策略。
溃疡性结肠炎发病机制复杂， 以免疫功能障碍

和肠道菌群失调为核心［４］， 免疫异常可激活炎症

反应并诱导氧化应激［５］， 形成 “免疫⁃炎症⁃氧化应

激” 恶性循环； 菌群紊乱则导致微生物代谢失衡，
加剧肠屏障损伤和免疫失调［６］， 共同推动疾病发

展。 中药活性成分因其多靶点、 低毒性等优势， 在

本病防治中潜力显著［７］。 黄酮类、 生物碱类、 多

糖类等中药成分可通过抗炎、 抗氧化、 免疫调节、
菌群干预等途径协同起效， 并且新型剂型的开发可

改善部分成分水溶性和生物利用度， 提升其疗效与

转化前景。 本文系统综述中药活性成分通过调节

“免疫⁃炎症⁃氧化应激” 轴和 “微生物⁃宿主共代

谢” 轴干预溃疡性结肠炎机制及效果， 以期为相

关新药研发提供理论参考。
１　 发病机制

溃疡性结肠炎是一种由遗传、 环境、 免疫、 肠

道菌群等多因素介导的炎症性肠病［８⁃１０］， 其核心病

理机制与 “免疫⁃炎症⁃氧化应激” “微生物⁃宿主共

代谢” 双轴密切相关。 免疫异常是本病核心环

节［１１］， 表现为 Ｔ 细胞异常活化、 调节性 Ｔ 细胞

（ｒｅｇｕｌａｔｏｒｙ Ｔ ｃｅｌｌ， Ｔｒｅｇ） 功能受损及固有免疫细胞

过度激活［１２］， 导致促炎因子大量释放， 破坏肠屏

障并诱发氧化应激， 促进活性氧 （ ｒｅａｃｔｉｖｅ ｏｘｙｇｅｎ
ｓｐｅｃｉｅｓ， ＲＯＳ）、 活性氮 （ ｒｅａｃｔｉｖｅ ｎｉｔｒｏｇｅｎ ｓｐｅｃｉｅｓ，
ＲＮＳ） 生成［１３］。 另外， 过量 ＲＯＳ ／ ＲＮＳ 可进一步激

活核因子⁃κＢ （ｎｕｃｌｅａｒ ｆａｃｔｏｒ ｋａｐｐａ⁃Ｂ， ＮＦ⁃κＢ） 等

炎症信号通路， 同时抑制核因子红细胞 ２ 相关因子

（ｎｕｃｌｅａｒ ｆａｃｔｏｒ ｅｒｙｔｈｒｏｉｄ ２⁃ｒｅｌａｔｅｄ ｆａｃｔｏｒ ２， Ｎｒｆ２） 等

抗 氧 化 防 御 机 制， 影 响 超 氧 化 物 歧 化 酶

（ ｓｕｐｅｒｏｘｉｄｅ ｄｉｓｍｕｔａｓｅ， ＳＯＤ ）、 过 氧 化 氢 酶

（ｃａｔａｌａｓｅ， ＣＡＴ）、 谷胱甘肽 （ ｇｌｕｔａｔｈｉｏｎｅ， ＧＳＨ）、
丙二醛 （ｍａｌｏｎｄｉａｌｄｅｈｙｄｅ， ＭＤＡ）、 总抗氧化能力
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（ｔｏｔａｌ ａｎｔｉｏｘｉｄａｎｔ ｃａｐａｃｉｔｙ， Ｔ⁃ＡＯＣ） 等相关酶系活

性， 形成 “免疫⁃炎症⁃氧化应激” 恶性循环［１４⁃１５］。
肠道菌群紊乱是驱动溃疡性结肠炎发展的另一

因素， 影响菌群多样性及短链脂肪酸 （ ｓｈｏｒｔ⁃ｃｈａｉｎ
ｆａｔｔｙ ａｃｉｄｓ， ＳＣＦＡｓ）、 色氨酸、 胆汁酸等代谢物生

成［１６］， 破坏肠黏膜屏障与免疫稳态。 ＳＣＦＡｓ 可增

强 Ｔｒｅｇ 细胞功能， 并抑制 ＮＦ⁃κＢ、 ＮＯＤ 样受体热

蛋白结构域相关蛋白 ３ （ＮＯＤ⁃ｌｉｋｅ ｒｅｃｅｐｔｏｒ ｆａｍｉｌｙ
ｐｙｒｉｎ ｄｏｍａｉｎ⁃ｃｏｎｔａｉｎｉｎｇ ３， ＮＬＲＰ３） 炎症小体活

化［１７］； 色氨酸代谢异常会减少芳香烃受体 （ ａｒｙｌ
ｈｙｄｒｏｃａｒｂｏｎ ｒｅｃｅｐｔｏｒ， ＡｈＲ） 生 成， 削 弱 屏 障 修

复［１８⁃１９］； 胆汁酸代谢紊乱会干扰法尼醇 Ｘ 受体

（ｆａｒｎｅｓｏｉｄ Ｘ ｒｅｃｅｐｔｏｒ， ＦＸＲ） ／ Ｇ 蛋白偶联胆汁酸受

体 ５ （Ｇ ｐｒｏｔｅｉｎ⁃ｃｏｕｐｌｅｄ ｂｉｌｅ ａｃｉｄ ｒｅｃｅｐｔｏｒ ５， ＴＧＲ５）
信号传导， 减弱抗炎、 抗凋亡作用［２０］； 精氨酸、
脯氨酸、 花生四烯酸等代谢紊乱也可打破抗炎与促

炎平衡。 综上所述， “免疫⁃炎症⁃氧化应激” 轴与

“微生物⁃宿主共代谢” 轴共同构成了核心病理网

络， 见图 １。

图 １　 溃疡性结肠炎核心病理驱动轴作用机制

２　 中药活性成分调节 “免疫⁃炎症⁃氧化应激” 轴

２􀆰 １　 黄酮类　 槲皮素、 木犀草素等黄酮类成分可

协同调节 “免疫⁃炎症⁃氧化应激” 轴干预溃疡性结

肠炎。 其中， 槲皮素具有免疫调节、 抗炎、 抗氧化

等活性［２１］， 可通过抑制环鸟苷酸 ／腺苷酸合成酶

（ｃｙｃｌｉｃ ＧＭＰ⁃ＡＭＰ ｓｙｎｔｈａｓｅ， ｃＧＡＳ） ／干扰素基因

刺激蛋白 （ ｓｔｉｍｕｌａｔｏｒ ｏｆ ｉｎｔｅｒｆｅｒｏｎ ｇｅｎｅｓ， ＳＴＩＮＧ）
信号通路， 恢复 Ｍ２ ／ Ｍ１ 型细胞平衡［２２］； 同时抑制

Ｃ⁃Ｘ⁃Ｃ ｍｏｔｉｆ 趋 化 因 子 配 体 ８ （ Ｃ⁃Ｘ⁃Ｃ ｍｏｔｉｆ
ｃｈｅｍｏｋｉｎｅ ｌｉｇａｎｄ ８， ＣＸＣＬ８） ／ Ｃ⁃Ｘ⁃Ｃ 趋化因子受

体 １ ／ ２ （Ｃ⁃Ｘ⁃Ｃ ｃｈｅｍｏｋｉｎｅ ｒｅｃｅｐｔｏｒ １ ／ ２， ＣＸＣＲ１ ／ ２）
信号通路， 降低 ＮＦ⁃κＢ、 肿瘤坏死因子 （ ｔｕｍｏｒ
ｎｅｃｒｏｓｉｓ ｆａｃｔｏｒ， ＴＮＦ ） ⁃α、 白 介 素 （ ｉｎｔｅｒｌｅｕｋｉｎ，
ＩＬ） ⁃１β、 干扰素 （ｉｎｔｅｒｆｅｒｏｎ， ＩＦＮ） ⁃β 等表达［２３］，

并直接清除氧自由基以强化抗氧化防御系统［２４］；
木犀草素则通过激活沉默信息调节因子 ３ （ ｓｉｒｔｕｉｎ
３， ＳＩＲＴ３） ／腺 苷 酸 活 化 蛋 白 激 酶 （ ａｄｅｎｏｓｉｎｅ
ｍｏｎｏｐｈｏｓｐｈａｔｅ⁃ａｃｔｉｖａｔｅｄ ｐｒｏｔｅｉｎ ｋｉｎａｓｅ， ＡＭＰＫ） ／雷
帕霉素靶蛋白 （ ｍｅｃｈａｎｉｓｔｉｃ ｔａｒｇｅｔ ｏｆ ｒａｐａｍｙｃｉｎ，
ｍＴＯＲ） 轴降低辅助性 Ｔ 细胞 １７ （ Ｔ ｈｅｌｐｅｒ １７
ｃｅｌｌｓ， Ｔｈ１７） ／ Ｔｒｅｇ 比值和 ＣＤ８ 阳性 Ｔ 淋巴细胞

（ＣＤ８⁃ｐｏｓｉｔｉｖｅ Ｔ ｌｙｍｐｈｏｃｙｔｅ， ＣＤ８＋ Ｔ） 比例， 升高

ＣＤ４ 阳性 Ｔ 淋巴细胞 （ＣＤ４⁃ｐｏｓｉｔｉｖｅ Ｔ ｌｙｍｐｈｏｃｙｔｅ，
ＣＤ４＋Ｔ） 比例， 改善 Ｔ 淋巴细胞免疫失衡， 维持免

疫稳 态［２５⁃２６］， 还 可 激 活 Ｎｒｆ２ ／血 红 素 氧 合 酶⁃１
（ｈｅｍｅ ｏｘｙｇｅｎａｓｅ⁃１， ＨＯ⁃１） 炎症信号通路发挥抗

炎与抗氧化效应［２７］， 尽管两者均具备多靶点治疗

潜力， 但水溶性差、 稳定性低、 生物利用度不足等

问题限制了临床转化。 近年来， 新型递药系统

［如蛋白质肽共载纳米粒 （用于槲皮素） 及铜离子

纳米复合物 （用于木犀草素） ］ 的开发［２８⁃２９］ 提升

了药物的包封率、 稳定性与靶向蓄积能力， 为黄酮

类成分的临床转化提供了有效策略。
２􀆰 ２　 生物碱类　 小檗碱、 氧化苦参碱等生物碱类

成分可通过调控免疫应答、 抑制炎症并增强抗氧化

防御来共同维护肠屏障功能。 其中， 小檗碱在抗

炎、 抗氧化应激、 免疫调节中的作用被广泛挖

掘［３０］， 能 通 过 抑 制 ＮＦ⁃κＢ、 Ｊａｎｕｓ 激 酶 （ ｊａｎｕｓ
ｋｉｎａｓｅ， ＪＡＫ） ／信号转导与转录激活因子 （ ｓｉｇｎａｌ
ｔｒａｎｓｄｕｃｅｒ ａｎｄ ａｃｔｉｖａｔｏｒ ｏｆ ｔｒａｎｓｃｒｉｐｔｉｏｎ， ＳＴＡＴ） 等关

键促炎信号通路， 调控巨噬细胞向 Ｍ２ 型极化， 并

增加 Ｔｒｅｇ 细胞比例， 重塑免疫稳态， 还可抑制

ＴＮＦ⁃α、 ＩＬ⁃６ 等表达， 升高内源性抗氧化酶活性，
缓解结肠损伤［３１］， 还可增加肠胶质细胞 （ ｅｎｔｅｒｉｃ
ｇｌｉａｌ ｃｅｌｌｓ， ＥＧＣｓ） 数量， 调节其与免疫及肠上皮

细胞 （ ｉｎｔｅｓｔｉｎａｌ ｅｐｉｔｈｅｌｉａｌ ｃｅｌｌｓ， ＩＥＣｓ） 的互相作

用， 介导炎症反应［３２］； 氧化苦参碱主要通过抑制

蛋白激酶 Ｂ （ｐｒｏｔｅｉｎ ｋｉｎａｓｅ Ｂ， Ａｋｔ） ／ ｍＴＯＲ 信号

通路调节 Ｂ 细胞亚群平衡， 并抑制 ＮＬＲＰ３ 活化，
逆转免疫⁃炎症失衡， 减轻黏膜损伤［３３⁃３４］， 尽管上

述生物碱在结肠炎治疗中均表现优异， 但生物利用

度低、 稳定性差等问题仍限制其临床应用。 目前，
将小檗碱载于人胎盘间充质干细胞来源外泌体中，
可实现结肠靶向递送， 增强疗效并改善药动学特

性［３５］， 为其他生物碱的开发提供了新思路。
２􀆰 ３　 多糖类　 近年来， 天然多糖因其低毒性及强

抗炎、 免疫调节特性， 在溃疡性结肠炎治疗中广受

关注， 黄芪多糖、 茯苓多糖、 黄精多糖等可通过协
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同调控 “免疫⁃炎症⁃氧化应激” 轴发挥干预作用。
其中， 黄芪多糖可通过抑制 Ｔ 细胞免疫受体中具

有 Ｉｇ、 ＩＴＩＭ 结构域 （Ｔ ｃｅｌｌ ｉｍｍｕｎｏｒｅｃｅｐｔｏｒ ｗｉｔｈ Ｉｇ
ａｎｄ ＩＴＩＭ ｄｏｍａｉｎｓ， ＴＩＧＩＴ） ／分化簇 １５５ （ｃｌｕｓｔｅｒ ｏｆ
ｄｉｆｆｅｒｅｎｔｉａｔｉｏｎ １５５， ＣＤ１５５ ） 的 信 号 通 路， 调 节

ｍＴｈ１７ ／ ｍＴｒｅｇ 细胞平衡， 纠正免疫稳态， 并可促进

线粒体代谢， 恢复记忆 Ｂ 细胞 （ｍｅｍｏｒｙ Ｂ ｃｅｌｌｓ，
ＭＢＣｓ） 平衡及其亚群分布， 建立体液免疫稳

态［３６⁃３７］， 还可提高脂联素水平， 抑制 Ｔｏｌｌ 样受体

（Ｔｏｌｌ⁃ｌｉｋｅ ｒｅｃｅｐｔｏｒ， ＴＬＲ） ／ ＮＦ⁃κＢ 信号通路活化，
降低 ＴＮＦ⁃α、 ＩＬ⁃６ 等表达， 缓解氧化应激［３８］； 茯

苓多糖可通过抑制 ＩＬ⁃３３ ／白细胞介素⁃１ 受体样 １
（ＩＬ⁃１ ｒｅｃｅｐｔｏｒ⁃ｌｉｋｅ １， ＳＴ２） 信号通路， 抑制肥大细

胞数量并恢复 Ｔｈ１７ ／ Ｔｒｅｇ 平衡， 降低 ＩＬ⁃５、 ＩＬ⁃１３
等促炎因子水平， 清除羟基自由基， 减轻黏膜炎症

反应［３９⁃４１］， 经羧甲基化修饰后水溶性和生物活性

进一步增强， 并能更有效地抑制 ＴＬＲ４ ／髓样分化因

子 ８８ （ｍｙｅｌｏｉｄ ｄｉｆｆｅｒｅｎｔｉａｔｉｏｎ ｆａｃｔｏｒ ８８， ＭｙＤ８８） ／
ＮＦ⁃κＢ 信号通路， 改善结肠损伤［４２］； 黄精多糖可

抑制 丝 裂 原 活 化 蛋 白 激 酶 （ ｍｉｔｏｇｅｎ⁃ａｃｔｉｖａｔｅｄ
ｐｒｏｔｅｉｎ ｋｉｎａｓｅ， ＭＡＰＫ） ／ ＮＦ⁃κＢ 信号通路， 恢复

Ｔｈ１７ ／ Ｔｒｅｇ 平衡， 降低 ＩＬ⁃６、 ＴＮＦ⁃α 水平， 修复肠

屏障功能［４３］， 还可清除羟基自由基和超氧阴离子

自由基［４４］。 此外， 多糖在抗生素清除肠道菌群后

仍能缓解结肠炎， 提示其作用不依赖于菌群调节，
而是直接作用于肠上皮细胞， 为相关机制研究提供

了新视角。
２􀆰 ４　 其他　 皂苷类、 酚类成分通过协同调控 “免
疫⁃炎症⁃氧化应激” 轴， 在溃疡性结肠炎干预中展

现出良好潜力。 其中， 芍药苷具有低毒性、 强抗炎

活性， 不仅能通过抑制死亡受体 ３ （ｄｅａｔｈ ｒｅｃｅｐｔｏｒ
３， ＤＲ３） 信号通路调节 ３ 型固有淋巴细胞 （ ｔｙｐｅ ３
ｉｎｎａｔｅ ｌｙｍｐｈｏｉｄ ｃｅｌｌｓ， ＩＬＣ３） 平衡， 改善肠屏障功

能， 还可调控细胞分裂周期蛋白 ４２ （ ｃｅｌｌ ｄｉｖｉｓｉｏｎ
ｃｙｃｌｅ ｐｒｏｔｅｉｎ ４２， ＣＤＣ４２） ／ ｃ⁃Ｊｕｎ Ｎ 末端激酶 （ ｃ⁃
Ｊｕｎ Ｎ⁃ｔｅｒｍｉｎａｌ ｋｉｎａｓｅ， ＪＮＫ） 信号通路， 抑制氧化

应激、 炎症及细胞凋亡［４５⁃４６］， 此外它在缺乏 Ｔ、 Ｂ
淋巴细胞的 Ｒａｇ１－ ／ －小鼠中仍起效， 表明其作用不

依赖于适应性免疫系统； 姜黄素通过调控 ＪＡＫ１ ／
ＳＴＡＴ３ ／细胞 因 子 信 号 抑 制 因 子 （ ｓｕｐｐｒｅｓｓｏｒ ｏｆ
ｃｙｔｏｋｉｎｅ ｓｉｇｎａｌｉｎｇ， ＳＯＣＳ ）、 鞘 氨 醇 激 酶 １
（ｓｐｈｉｎｇｏｓｉｎｅ ｋｉｎａｓｅ １， ＳｐｈＫ１） ／ ＮＦ⁃κＢ 信号通路，
协调 Ｔ 细胞稳态并抑制炎症因子释放， 同时清除

氧自由基， 减轻氧化应激［４７⁃４８］， 可提高溃疡性结

肠炎患者的临床缓解率和内镜改善率［４９］， 为克服

其生物利用度低及结肠滞留时间短的问题， 有研究

将其封装于聚合物聚乳酸⁃羟基乙酸微球后包埋于

光交联水凝胶中， 发现它可通过抗炎、 抗氧化、 修

复屏障多重机制发挥药效， 实现原料药在结肠炎症

部位的长效、 靶向、 协同治疗［５０］。 综上所述， 上

述成分均能多靶点协同干预溃疡性结肠炎病理进

程， 但多数相关研究仅停留于 “单成分⁃多靶点”
的描述， 未能深入解析靶点之间的层级关系及其化

学结构影响的作用倾向性。 未来可依据此特性模拟

“君臣佐使” 治疗策略， 构建针对 “免疫⁃炎症⁃氧
化应激” 恶性循环的复合制剂， 实现从简单靶点

叠加向系统协同治疗的转变。
详见表 １。

表 １　 中药活性成分调节 “免疫⁃炎症⁃氧化应激” 轴防治溃疡性结肠炎作用机制

结构类型 名称 动物模型
剂量 ／

（ｍｇ·ｋｇ－１）
信号通路靶点 免疫调节作用 抗炎作用 抗氧化作用 文献

黄酮类 槲皮素 ＢＡＬＢ ／ ｃ 小 鼠、
Ｃ５７ＢＬ ／ ６ 小鼠

５、１０、３０ ｃＧＡＳ ／ ＳＴＩＮＧ、
ＣＸＣＬ８ ／ ＣＸＣＲ１ ／ ２

抑制Ｍ１极化，恢
复Ｍ１／ Ｍ２平衡

降低 ＴＮＦ⁃α、 ＩＬ⁃１７Ａ、
ＩＬ⁃１β、 ＩＬ⁃６、 ＮＦ⁃κＢ、
ＩＦＮ⁃β 水平，升高 ＩＬ⁃
１０ 水平

升高 ＳＯＤ、 ＣＡＴ、
ＧＳＨ 活 性， 降 低
ＲＯＳ、ＭＤＡ 水平

［２２⁃２４，２８］

木犀草素 ＢＡＬＢ ／ ｃ 小 鼠、
Ｃ５７ＢＬ ／ ６ 小鼠

１２􀆰 ５、２５、５０ ＮＦ⁃κＢ、 Ｎｒｆ２ ／ ＨＯ⁃
１、ＳＩＲＴ３ ／ ＡＭＰＫ ／
ｍＴＯＲ

降 低 Ｔｈ１７／ Ｔｒｅｇ
比值 和 ＣＤ８＋ Ｔ
细胞比例，升高

ＣＤ４＋Ｔ 细胞比例

降低 ＴＮＦ⁃α、 ＩＬ⁃６、 ＩＬ⁃
１７、 ＩＬ⁃２３、 ＩＬ⁃１３、 ＩＬ⁃３
水平，升高 ＩＬ⁃１０ 水平

升高 ＳＯＤ、Ｔ⁃ＡＯＣ
活性，降低 ＭＤＡ
水平，清除活性氧

［２５⁃２７，２９］

生物碱类 小檗碱 Ｃ５７ＢＬ ／ ６ 小鼠、
ＳＤ 大鼠

２５、５０、１００ ＮＦ⁃κＢ、 Ｎｒｆ２ ／ ＨＯ⁃
１、 ＭＡＰＫ、 ＪＡＫ ／
ＳＴＡＴ、ＥＧＣｓ⁃ＩＥＣｓ⁃
免疫细胞

恢复 Ｍ１／ Ｍ２ 平
衡，增加 Ｔｒｅｇ 细
胞 比 例， 调 控
ＥＧＣｓ⁃ＩＥＣｓ⁃免 疫
细胞互作

降低 ＴＮＦ⁃α、 ＩＬ⁃６、 ＩＬ⁃
１β、ＩＬ⁃１７、ＩＬ⁃１２、ＩＦＮ⁃γ
水平，升高 ＩＬ⁃１０ 水平

升高 ＳＯＤ、 ＣＡＴ、
ＧＳＨ、ＨＯ⁃１ 活性，
降 低 ＲＯＳ、 ＭＤＡ
水平

［３０⁃３２］

氧化苦参碱 ＢＡＬＢ ／ ｃ 小鼠、
ＳＤ 大鼠

４０、８０、１００ Ａｋｔ ／ ｍＴＯＲ、ＮＬＲＰ３ 调节 Ｂ 细胞亚
群平衡，抑制细
胞焦亡

降低 ＴＮＦ⁃α、ＩＬ⁃１β、ＩＬ⁃
６、 ＮＦ⁃κＢ 水 平， 升 高
ＩＬ⁃１０、ＩＬ⁃３５ 表达

升高 ＧＳＨ 活性，
降低 ＲＯＳ 水平

［３３⁃３４］

５５１
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续表 １

结构类型 名称 动物模型
剂量 ／

（ｍｇ·ｋｇ－１）
信号通路靶点 免疫调节作用 抗炎作用 抗氧化作用 文献

多糖类 黄芪多糖 ＢＡＬＢ ／ ｃ 小 鼠、
Ｃ５７ＢＬ ／ ６ 小鼠

１００、２００、４００ ＴＩＧＩＴ／ ＣＤ１５５、脂联
素 ／ ＴＬＲ４／ ＮＦ⁃κＢ、
线粒体代谢

调节ｍＴｈ１７／ ｍＴｒｅｇ
平衡，恢复 ＭＢＣｓ
平衡

降低 ＴＮＦ⁃α、 ＩＬ⁃６、 ＩＬ⁃
１７、 ＩＬ⁃２、 ＩＬ⁃２３ 水 平，
升高 ＩＬ⁃１０ 水平

升高 ＳＯＤ 活性，
降低 ＭＰＯ、 ＭＤＡ
水平

［３６⁃３８］

茯苓多糖 Ｃ５７ＢＬ ／ ６ 小鼠、
ＳＤ 大鼠、Ｗｉｓｔａｒ
大鼠

５、１００、２００ ＩＬ⁃３３ ／ ＳＴ２、ＴＬＲ４ ／
ＭｙＤ８８ ／ ＮＦ⁃κＢ

抑制肥大细胞活
化，恢 复 Ｔｈ１７／
Ｔｒｅｇ 平衡

降低 ＴＮＦ⁃α、ＩＬ⁃３３、ＩＬ⁃
５、 ＩＬ⁃１３、 ＩＬ⁃６、 ＩＬ⁃１２
水平

清除羟基自由基 ［３９⁃４２］

黄精多糖 Ｃ５７ＢＬ ／ ６ 小鼠 ５０、１００、２００ ＭＡＰＫ ／ ＮＦ⁃κＢ 恢复 Ｔｈ１７ ／ Ｔｒｅｇ
平衡

降低 ＴＮＦ⁃α、 ＩＬ⁃６、 ＩＬ⁃
１８、ＩＬ⁃１７Ａ、ＩＬ⁃１β、ＩＦＮ⁃
γ 水 平， 升 高 ＩＬ⁃１０
水平

清除羟基自由基、
超 氧 阴 离 子 自
由基

［４３⁃４４］

其他 芍药苷 Ｃ５７ＢＬ ／ ６ 小鼠、
Ｒａｇ１－ ／ － 小 鼠、
ＳＤ 大鼠

２５、５０、１００ ＤＲ３、ＣＤＣ４２ ／ ＪＮＫ 恢复 ＩＬＣ３ 亚群
分布，抑制细胞
凋亡

降低 ＴＮＦ⁃α、 ＩＬ⁃１７Ａ、
ＩＬ⁃６、ＩＬ⁃１β 水平

升 高 ＨＯ⁃１、 ＳＯＤ
活性，降低 ＭＤＡ
水平

［４５⁃４６］

姜黄素 ＢＡＬＢ ／ ｃ 小 鼠、
Ｃ５７ＢＬ ／ ６ 小鼠

１００、２００ ＪＡＫ１／ ＳＴＡＴ３／ ＳＯＣＳ、
ＳｐｈＫ１／ ＮＦ⁃κＢ

促进 Ｍ２ 巨噬细
胞 极 化， 调 节
ｍＴｈ ／ ｍＴｆｈ 细胞
稳态

降低 ＴＮＦ⁃α、ＩＬ⁃１β、ＩＬ⁃
６、ＩＬ⁃８、ＩＬ⁃１７Ａ 水平

降低 ＲＯＳ 水平 ［４７⁃４８，５０］

３　 中药活性成分调节 “微生物⁃宿主共代谢” 轴

３􀆰 １　 黄酮类　 双氢槲皮素、 汉黄芩素、 葛根素等

化合物可通过调控 “微生物⁃宿主共代谢” 轴维持

肠道免疫稳态， 治疗溃疡性结肠炎。 双氢槲皮素可

调节菌群结构， 增加厚壁菌门相对丰度， 减少变形

菌门相对丰度， 并纠正拟杆菌门相对丰度异常升

高， 进 而 影 响 ＳＣＦＡｓ 水 平［５１］。 ＳＣＦＡｓ 可 升 高

ｍｉＲＮＡ⁃１０ａ⁃５ｐ 表 达， 抑 制 磷 脂 酰 肌 醇 ３⁃激 酶

（ｐｈｏｓｐｈａｔｉｄｙｌｉｎｏｓｉｔｏｌ ３⁃ｋｉｎａｓｅ， ＰＩ３Ｋ） ／ Ａｋｔ 信号通

路， 减轻炎症并修复肠屏障， 形成 “菌群⁃ＳＣＦＡｓ⁃
ＰＩ３Ｋ⁃Ａｋｔ” 抗炎信号通路。 汉黄芩素与葛根素均聚

焦于调控色氨酸代谢， 前者可促进有益菌定植， 抑

制志贺菌属增殖， 升高１Ｈ⁃吲哚⁃３⁃甲醛、 吲哚乳酸

等代谢物水平［５２］， 可作为 ＡｈＲ 配体激活 ＡｈＲ 信号

通路， 促进 ＩＬ⁃２２ 分泌， 并维持 ＩＬＣ３ ／ ＩＬＣ１ 平衡，
增强屏障功能； 葛根素除调节色氨酸代谢外， 还能

以微生物依赖方式提升尿苷、 鸟苷等嘌呤代谢物水

平， 进而激活过氧化物酶体增殖物激活受体 γ
（ ｐｅｒｏｘｉｓｏｍｅ ｐｒｏｌｉｆｅｒａｔｏｒ⁃ａｃｔｉｖａｔｅｄ ｒｅｃｅｐｔｏｒ ｇａｍｍａ，
ＰＰＡＲγ） 信号通路， 强化黏膜屏障［５３］。 综上所述，
黄酮类成分均可通过调节菌群结构、 影响代谢物水

平来缓解溃疡性结肠炎， 但其活性存在显著差异，
可能与取代基的位置与数量有关。 因此， 可对该类

成分结构进行合理修饰， 优化其对特定有益菌或酶

系的调控效应， 实现精准代谢干预， 推动该类成分

在溃疡性结肠炎中的进一步治疗。
３􀆰 ２　 生物碱类　 药根碱和小檗碱能通过调控 “微
生物⁃宿主共代谢” 轴， 在溃疡性结肠炎治疗中发

挥重要作用。 Ｚｈａｎｇ 等［５４］ 发现， 药根碱能提升阿

克曼菌属相对丰度， 并抑制脱硫弧菌属等致病菌生

长。 脱硫弧菌属细菌过度增殖会激活可诱导型一氧

化氮合酶 （ ｉｎｄｕｃｉｂｌｅ ｎｉｔｒｉｃ ｏｘｉｄｅ ｓｙｎｔｈａｓｅ， ｉＮＯＳ），
扰乱花生四烯酸代谢， 促进前列腺素 Ｅ２ 等促炎介

质生成， 而药根碱能有效调节该代谢途径， 升高抗

炎脂类如磷脂酰胆碱水平， 调控 “微生物⁃花生四

烯酸代谢” 轴， 从而发挥抗炎作用［５５］； 小檗碱通

过增加 ＳＣＦＡｓ 产生菌， 抑制致病菌增殖， 重塑肠

道微生态。 粪便微生物群移植 （ ｆｅｃａｌ ｍｉｃｒｏｂｉｏｔａ
ｔｒａｎｓｐｌａｎｔａｔｉｏｎ， ＦＭＴ） 实验表明， 小檗碱干预可提

高 ＳＣＦＡｓ 水平， 降低脂多糖 （ ｌｉｐｏｐｏｌｙｓａｃｃｈａｒｉｄｅ，
ＬＰＳ） 水平， 并调控 ＮＦ⁃κＢ 信号通路、 紧密连接蛋

白表达， 增强肠屏障功能［５６］， 此外还能促进乳酸

杆菌、 罗氏菌生长， 升高次级胆汁酸水平［５７］。 胆

汁酸不仅能直接抑制上皮细胞凋亡， 还能激活

ＦＸＲ ／ ＴＧＲ５ 信号传导调节肠道运动和局部免疫， 表

明 “菌群⁃胆汁酸⁃ＦＸＲ⁃ＴＧＲ５” 信号通路是溃疡性

结肠炎治疗的潜在靶点。 综上所述， 生物碱类成分

可通过多靶点调控菌群及其代谢物， 改善肠道微环

境与免疫稳态， 但菌群变化是药物起效的原因还是

结果仍需厘清， ＦＭＴ 这类实验可为此提供关键依

据。 未来研究应加强此类方法的应用， 深入解析宿

主⁃微生物互作机制， 推动天然药物在溃疡性结肠

炎治疗中的机制研究与临床应用。
３􀆰 ３　 多糖类 　 多糖类成分可通过重塑肠道菌群，
调控色氨酸与精氨酸代谢并促进 ＳＣＦＡｓ 生成， 维

持免疫稳态。 白芷多糖能有效逆转性结肠炎小鼠菌
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群失调， 调节精氨酸 ／脯氨酸代谢， 促进抗炎介质

Ｓ⁃腺苷甲硫氨酸和亚精胺生成， 并抑制 γ⁃氨基丁酸

积累， 从而发挥抗炎及屏障修复作用［５８］。 党参多

糖与黄芪多糖主要通过促进 ＳＣＦＡｓ 生成， 激活游

离脂 肪 酸 受 体 ２ （ ｆｒｅｅ ｆａｔｔｙ ａｃｉｄ ｒｅｃｅｐｔｏｒ ２，
ＦＦＡＲ２）、 ＦＦＡＲ３ 表达， 进而抑制 ＮＬＲＰ３ 活化及

组蛋白脱乙酰酶 ３ （ｈｉｓｔｏｎｅ ｄｅａｃｅｔｙｌａｓｅ ３， ＨＤＡＣ３）
活性， 减轻黏膜炎症反应［５９］， 此外后者还可特异

性降低肠杆菌科相对丰度， 调节 Ｔｈ１７ ／ Ｔｒｅｇ 平衡，
增强免疫调节功能［６０］。 该类成分具有高度结构异

质性， 传统基于单一含量指标的质控方法难以保障

批次一致性和活性可靠性， 严重制约其临床转化。
因此， 建立基于结构与功能关联的标准化策略， 整

合分子量分布、 单糖组成等化学特征与 ＳＣＦＡｓ 促

进能力等关键生物效价评价， 将有助于推动多糖类

由粗提物向精准药物转变， 为其临床应用提供可靠

依据。
３􀆰 ４　 其他 　 酚类、 皂苷类成分同样可通过调控

“微生物⁃宿主共代谢” 轴， 改善结肠炎症和肠道

稳态。 没食子酸和丹皮酚均可促进乳杆菌属、 双歧

杆菌属等有益菌增殖， 抑制志贺菌属等致病菌生

长， 同时前者通过提高双歧杆菌属和乳杆菌属相对

丰度， 促进共轭胆汁酸向游离形式转化， 调节胆汁

酸代谢， 减轻炎症并增加 ＩＬＣ３ 比例［６１］； 后者通过

促进乳酸杆菌属增殖， 恢复石胆酸、 脱氧胆酸等次

级胆汁酸水平， 进而激活 ＦＸＲ ／ ＴＧＲ５ 轴， 改善肠

道屏障并抑制炎症［６２］。 白头翁皂苷可恢复阿克曼

菌属与瘤胃球菌属相对丰度， 促进 ＳＣＦＡｓ 生成，
进而激活 ＦＦＡＲ２ 受体， 抑制 ＮＬＲＰ３ 活化， 维持肠

道稳态［６３］。 人参皂苷 Ｒｇ１ 可促进毛螺菌科、 异杆

菌属增殖， 增加色氨酸代谢物生成， 激活 ＡＨＲ 信

号通路， 从而增强紧密连接蛋白表达， 修复肠屏

障［６４］。 综上所述， 上述成分虽结构各异， 但均可

通过重塑肠道菌群， 调控 “微生物⁃宿主共代谢”
轴防治结肠炎， 其优势在于能恢复内源性稳态而非

抑制某一靶点， 有望带来更持久的缓解与更少的不

良反应， 但成分⁃菌群⁃宿主间的因果联系仍需厘

清。 未来可深度解析这一内在网络， 以推动该机制

的临床转化。
详见表 ２。

表 ２　 中药活性成分调节 “微生物⁃宿主共代谢” 轴防治溃疡性结肠炎作用机制

结构类型 名称 动物模型
剂量 ／

（ｍｇ·ｋｇ－１）
菌群变化 代谢物变化 作用机制 文献

黄酮类 双氢槲皮素 Ｃ５７ＢＬ ／ ６ 小鼠 ５、２０ 升高厚壁菌门相对丰度，降
低变形菌门、拟杆菌门相对
丰度

升高 ＳＣＦＡｓ 水平 升高 ｍｉＲ⁃１０ａ⁃５ｐ 水平，抑
制 ＰＩ３Ｋ ／ Ａｋｔ 活化和炎症反
应，修复肠屏障

［５１］

汉黄芩素 Ｃ５７ＢＬ ／ ６ 小鼠 ２０ 升高瘤胃菌属相对丰度，降
低志贺氏菌属相对丰度

升高 ５⁃羟色氨酸、吲
哚乳酸、 １Ｈ⁃吲哚⁃３⁃
甲醛水平

激活 ＡｈＲ 信号通路、促进
ＩＬ⁃２２ 分 泌， 维 持 ＩＬＣ３ ／
ＩＬＣ１ 平衡，抑制炎症，增强
肠屏障

［５２］

葛根素 Ｃ５７ＢＬ ／ ６ 小鼠 ２００ 升高脱硫弧菌科、红杆菌科
相对丰度，降低肠杆菌科相
对丰度，恢复厚壁菌门 ／ 拟
杆菌门比值

升高 ３⁃羟基邻氨基
苯甲酸、鸟苷、尿苷
水平

激活 ＰＰＡＲγ 信号通路，抑
制 ＮＦ⁃κＢ 活 化， 修 复 肠
屏障

［５３］

生物碱类 药根碱 Ｃ５７ＢＬ ／ ６ 小鼠 ４０、６０、８０ 升高阿克曼菌属相对丰度，
降低志贺菌属、脱硫弧菌属
相对丰度

降低花生四烯酸、前
列腺素 Ｅ２ 水平，升
高磷脂酰胆碱水平

抑制 ｉＮＯＳ 水平和炎症，修
复肠屏障

［５４⁃５５］

小檗碱 Ｃ５７ＢＬ ／ ６ 小鼠 ２５、５０、１００ 升高乳酸杆菌、罗氏菌相对
丰度，降低脱硫弧菌属、臭
味杆菌属相对丰度

升高 ＳＣＦＡｓ、脱氧胆
酸、熊去氧胆酸、牛
磺熊去氧胆酸水平

抑制 ＮＦ⁃κＢ 信号通路和炎
症，激活 ＦＸＲ ／ ＴＧＲ５ 受体，
修复肠屏障

［５６⁃５７］

多糖类 白芷多糖 Ｃ５７ＢＬ ／ ６ 小鼠 ２００、４００ 升高气味杆菌属、粪球菌属
相对丰度，降低链球菌属相
对丰度

升高 Ｓ⁃腺苷甲硫氨
酸、亚精胺水平，降
低 γ⁃氨基丁酸水平

抑制炎症，修复肠屏障 ［５８］

党参多糖 Ｃ５７ＢＬ ／ ６ 小鼠 ３００、６００、
１ ２００

升高厚壁菌门、阿克曼菌属
相对丰度，降低拟杆菌门、
变形菌门相对丰度

升高 ＳＣＦＡｓ 水平 激活 ＦＦＡＲ ／ ＦＦＡＲ３ 受体，
抑制 ＮＬＲＰ３ 活化和炎症反
应，增强黏膜防御

［５９］

黄芪多糖 ＢＡＬＢ ／ ｃ 小鼠 ２００、４００ 升高厚壁菌门、毛螺菌科相
对丰度，降低脱硫杆菌门、
肠杆菌科相对丰度

升高 ＳＣＦＡｓ 水平 激活 ＦＦＡＲ２ ／ ＦＦＡＲ３ 受体，
抑制 ＨＤＡＣ３ ／ ＮＦ⁃κＢ 信号
通路， 恢 复 Ｔｈ１７ ／ Ｔｒｅｇ 平
衡，改善氧化应激，修复肠
屏障

［６０］
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续表 ２

结构类型 名称 动物模型
剂量 ／

（ｍｇ·ｋｇ－１）
菌群变化 代谢物变化 作用机制 文献

其他 没食子酸 Ｃ５７ＢＬ ／ ６ 小鼠 １００ 升高双歧杆菌属、乳杆菌属
相对丰度，降低志贺菌属、
链球菌属相对丰度

升高熊去氧胆酸、异
别石胆酸、３⁃氧代胆
酸水平

促进 ＩＬＣ３ 增殖，抑制炎症，
修复肠屏障

［６１］

丹皮酚 ＢＡＬＢ ／ ｃ 小鼠 ５０、１００ 升高乳酸杆菌属、拟杆菌属
相对丰度，降低志贺菌属相
对丰度

升高石胆酸、脱氧胆
酸、鹅脱氧胆酸水平

激活 ＦＸＲ／ ＦＧＦ１５ 信号通路，
抑制炎症，修复肠屏障

［６２］

白头翁皂苷 ＳＤ 大鼠 ３００ 升高毛螺菌科、阿克曼菌
属、瘤胃球菌属相对丰度

升高 ＳＣＦＡｓ 水平 激 活 ＦＦＡＲ２ 受 体， 抑 制
ＮＬＲＰ３ 活化和炎症反应，
修复肠屏障

［６３］

人参皂苷 Ｒｇ１ Ｃ５７ＢＬ ／ ６ 小鼠 ２００ 升高毛螺菌科、乳杆菌属、
异杆菌属相对丰度

升高 ３⁃吲哚丙酸、吲
哚⁃３⁃甲 醛、 吲 哚⁃３⁃
乳酸、烟酰胺水平

激活 ＡＨＲ 信号通路，抑制
炎症，修复肠屏障

［６４］

４　 结语与展望

本文通过系统回顾溃疡性结肠炎发病机制及中

药活性成分的干预作用， 指出其核心病理环节为

“免疫⁃炎症⁃氧化应激” 轴的恶性循环与 “微生物⁃
宿主共代谢” 轴的紊乱。 研究表明， 中药活性成

分可多靶点协同调控上述双轴， 既通过重塑免疫稳

态、 抑制炎症及激活抗氧化防御以阻断前者， 又通

过修复菌群结构， 调控 ＳＣＦＡｓ、 色氨酸、 胆汁酸等

代谢以改善后者。 同时， 新型递药系统进一步提升

了上述成分的生物利用度， 助力其临床转化。 然

而， 当前研究仍存在部分问题值得探索， 首先， 这

两条轴并非平行而是存在密切关联， 但多数工作缺

乏对双轴互作机制的深入解析； 其次， 现有机制研

究过度依赖动物模型， 但其微生物背景、 免疫系统

与人体存在显著差异， 导致转化价值受限； 此外，
菌群⁃代谢⁃免疫之间的因果链条仍未完全建立， 多

数结论源于相关性分析， 而非干预性验证。 未来应

整合多组学与因果推断试验， 系统阐释 “免疫⁃炎
症⁃氧化应激” “微生物⁃宿主共代谢” 双轴互作的

分子机制， 在干预策略上， 可基于 “君臣佐使”
理论或人工智能设计多成分复方， 或开发工程菌群

递药系统， 实现跨轴协同治疗； 在临床转化方面，
需推进人源化模型构建并开展随机对照试验， 积累

高质量人体数据， 推动溃疡性结肠炎多轴治疗策略

的真正落地。

参考文献：

［ １ ］ 　 Ｈｒａｃｓ Ｌ， Ｗｉｎｄｓｏｒ Ｊ Ｗ， Ｇｏｒｏｓｐｅ Ｊ， ｅｔ ａｌ． Ｇｌｏｂａｌ ｅｖｏｌｕｔｉｏｎ ｏｆ
ｉｎｆｌａｍｍａｔｏｒｙ ｂｏｗｅｌ ｄｉｓｅａｓｅ ａｃｒｏｓｓ ｅｐｉｄｅｍｉｏｌｏｇｉｃ ｓｔａｇｅｓ［Ｊ］ ．

Ｎａｔｕｒｅ， ２０２５， ６４２（８０６７）： ４５８⁃４６６．

［ ２ ］ 　 包云丽， 汪　 哲， 唐海茹， 等． １９９０—２０１９ 年中国炎症性肠

病疾病负担及变化趋势分析［Ｊ］ ． 中国全科医学， ２０２３，

２６（３６）： ４５８１⁃４５８６．

［ ３ ］ 　 Ｓｅｙｅｄｉａｎ Ｓ Ｓ， Ｎｏｋｈｏｓｔｉｎ Ｆ， Ｍａｌａｍｉｒ Ｍ Ｄ． Ａ ｒｅｖｉｅｗ ｏｆ ｔｈｅ
ｄｉａｇｎｏｓｉｓ， ｐｒｅｖｅｎｔｉｏｎ， ａｎｄ ｔｒｅａｔｍｅｎｔ ｍｅｔｈｏｄｓ ｏｆ ｉｎｆｌａｍｍａｔｏｒｙ
ｂｏｗｅｌ ｄｉｓｅａｓｅ［Ｊ］ ． Ｊ Ｍｅｄ Ｌｉｆｅ， ２０１９， １２（２）： １１３⁃１２２．

［ ４ ］ 　 Ｃｈｕ Ｈ， Ｋｈｏｓｒａｖｉ Ａ， Ｋｕｓｕｍａｗａｒｄｈａｎｉ Ｉ Ｐ， ｅｔ ａｌ． Ｇｅｎｅ⁃
ｍｉｃｒｏｂｉｏｔａ ｉｎｔｅｒａｃｔｉｏｎｓ ｃｏｎｔｒｉｂｕｔｅ ｔｏ ｔｈｅ ｐａｔｈｏｇｅｎｅｓｉｓ ｏｆ
ｉｎｆｌａｍｍａｔｏｒｙ ｂｏｗｅｌ ｄｉｓｅａｓｅ［Ｊ］ ． Ｓｃｉｅｎｃｅ， ２０１６， ３５２（ ６２８９）：
１１１６⁃１１２０．

［ ５ ］ 　 Ｇｕｏ Ｙ Ｘ， Ｓｈｅｎ Ａ， Ｈａｎ Ｋ Ｘ， ｅｔ ａｌ． Ｐｏｔｅｎｔｉｌｌａ ａｎｓｅｒｉｎａ Ｌ．
ｆｌａｖｏｎｏｉｄｓ ａｍｅｌｉｏｒａｔｅ ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｂｙ ｍｏｄｕｌａｔｉｎｇ ｏｘｉｄａｔｉｖｅ
ｓｔｒｅｓｓ， ｉｎｔｅｓｔｉｎａｌ ｍｉｃｒｏｂｉｏｔａ ｄｙｓｂｉｏｓｉｓ， ａｎｄ ｉｎｆｌａｍｍａｔｏｒｙ
ｒｅｓｐｏｎｓｅｓ［Ｊ］ ． ３ Ｂｉｏｔｅｃｈ， ２０２５， １５（８）： ２４５．

［ ６ ］ 　 Ｚｈｕ Ｗ Ｈ， Ｗｉｎｔｅｒ Ｍ Ｇ， Ｂｙｎｄｌｏｓｓ Ｍ Ｘ， ｅｔ ａｌ． Ｐｒｅｃｉｓｉｏｎ
ｅｄｉｔｉｎｇ ｏｆ ｔｈｅ ｇｕｔ ｍｉｃｒｏｂｉｏｔａ ａｍｅｌｉｏｒａｔｅｓ ｃｏｌｉｔｉｓ［Ｊ］ ． Ｎａｔｕｒｅ，
２０１８， ５５３（７６８７）： ２０８⁃２１１．

［ ７ ］ 　 杨玲珑， 由智夫， 张　 杨． 芍药甘草汤及其活性成分干预溃

疡性结肠炎作用机制研究进展［Ｊ ／ ＯＬ］． 中成药： １⁃６ （２０２５⁃
０８⁃１８ ） ［ ２０２５⁃０９⁃１９ ］． ｈｔｔｐｓ： ／ ／ ｌｉｎｋ． ｃｎｋｉ． ｎｅｔ ／ ｕｒｌｉｄ ／ ３１．
１３６８． Ｒ􀆰 ２０２５０８１８􀆰 １８１８􀆰 ００２．

［ ８ ］ 　 Ｌｉｕ Ｊ Ｚ， Ｖａｎ Ｓｏｍｍｅｒｅｎ Ｓ， Ｈｕａｎｇ Ｈ， ｅｔ ａｌ． Ａｓｓｏｃｉａｔｉｏｎ
ａｎａｌｙｓｅｓ ｉｄｅｎｔｉｆｙ ３８ ｓｕｓｃｅｐｔｉｂｉｌｉｔｙ ｌｏｃｉ ｆｏｒ ｉｎｆｌａｍｍａｔｏｒｙ ｂｏｗｅｌ
ｄｉｓｅａｓｅ ａｎｄ ｈｉｇｈｌｉｇｈｔ ｓｈａｒｅｄ ｇｅｎｅｔｉｃ ｒｉｓｋ ａｃｒｏｓｓ ｐｏｐｕｌａｔｉｏｎｓ［Ｊ］ ．
Ｎａｔ Ｇｅｎｅｔ， ２０１５， ４７（９）： ９７９⁃９８６．

［ ９ ］ 　 ＭｃＧｏｖｅｒｎ Ｄ Ｐ Ｂ， Ｋｕｇａｔｈａｓａｎ Ｓ， Ｃｈｏ Ｊ Ｈ． Ｇｅｎｅｔｉｃｓ ｏｆ
ｉｎｆｌａｍｍａｔｏｒｙ ｂｏｗｅｌ ｄｉｓｅａｓｅｓ［Ｊ］ ． Ｇａｓｔｒｏｅｎｔｅｒｏｌｏｇｙ， ２０１５，
１４９（５）： １１６３⁃１１７６． ｅ２．

［１０］ 　 Ｋｏｐｐｅｌｍａｎ Ｍ Ｊ Ｌ， Ｏｙｕｇｉ Ａ Ａ， Ｍａｌｊａａｒｓ Ｊ Ｗ Ｐ， ｅｔ ａｌ．
Ｍｏｄｉｆｉａｂｌｅ ｆａｃｔｏｒｓ ｉｎｆｌｕｅｎｃｉｎｇ ｄｉｓｅａｓｅ ｆｌａｒｅｓ ｉｎ ｉｎｆｌａｍｍａｔｏｒｙ
ｂｏｗｅｌ ｄｉｓｅａｓｅ： ａ ｌｉｔｅｒａｔｕｒｅ ｏｖｅｒｖｉｅｗ ｏｆ ｌｉｆｅｓｔｙｌｅ， ｐｓｙｃｈｏｌｏｇｉｃａｌ，
ａｎｄ ｅｎｖｉｒｏｎｍｅｎｔａｌ ｒｉｓｋ ｆａｃｔｏｒｓ［Ｊ］ ． Ｊ Ｃｌｉｎ Ｍｅｄ， ２０２５，
１４（７）： ２２９６．

［１１］ 　 宋亚芳， 裴丽霞， 赵婷婷， 等． 溃疡性结肠炎免疫因素发病

机制的研究进展［Ｊ］ ． 医学研究生学报， ２０１９， ３２ （ ４）：
４３２⁃４３６．

［１２］ 　 Ａｎｇｅｌａ Ｓ， Ｂｅａｔｒｉｚ Ｈ， Ｒａｑｕｅｌ Ｇ， ｅｔ ａｌ． Ｐａｔｈｏｐｈｙｓｉｏｌｏｇｙ ｏｆ
ｉｎｆｌａｍｍａｔｏｒｙ ｂｏｗｅｌ ｄｉｓｅａｓｅ： ｉｎｎａｔｅ ｉｍｍｕｎｅ ｓｙｓｔｅｍ［Ｊ］ ． Ｉｎｔ Ｊ
Ｍｏｌ Ｓｃｉ， ２０２３， ２４（２）： １５２６．

［１３］ 　 Ｅｓｔｅｒ Ａ， Ｅｓｔｅｂａｎ Ｓ， Ｉｎ􀆧ｓ Ｍ， ｅｔ ａｌ． Ｏｘｉｄａｔｉｖｅ ｓｔｒｅｓｓ ｉｎ ｔｈｅ
ｐａｔｈｏｇｅｎｅｓｉｓ ｏｆ Ｃｒｏｈｎ’ ｓ ｄｉｓｅａｓｅ ａｎｄ ｔｈｅ ｉｎｔｅｒｃｏｎｎｅｃｔｉｏｎ ｗｉｔｈ
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ｉｍｍｕｎｏｌｏｇｉｃａｌ ｒｅｓｐｏｎｓｅ， ｍｉｃｒｏｂｉｏｔａ， ｅｘｔｅｒｎａｌ ｅｎｖｉｒｏｎｍｅｎｔａｌ
ｆａｃｔｏｒｓ， ａｎｄ ｅｐｉｇｅｎｅｔｉｃｓ［Ｊ］ ． Ａｎｔｉｏｘｉｄａｎｔｓ （ Ｂａｓｅｌ ）， ２０２１，
１０（１）： ６４．

［１４］ 　 Ｍｕｒｏ Ｐ， Ｚｈａｎｇ Ｌ， Ｌｉ Ｓ Ｈ， ｅｔ ａｌ． Ｔｈｅ ｅｍｅｒｇｉｎｇ ｒｏｌｅ ｏｆ
ｏｘｉｄａｔｉｖｅ ｓｔｒｅｓｓ ｉｎ ｉｎｆｌａｍｍａｔｏｒｙ ｂｏｗｅｌ ｄｉｓｅａｓｅ［Ｊ］ ． Ｆｒｏｎｔ
Ｅｎｄｏｃｒｉｎｏｌ （Ｌａｕｓａｎｎｅ）， ２０２４， １５： １３９０３５１．

［１５］ 　 Ｐｅｎｇ Ｓ， Ｓｈｅｎ Ｌ， Ｙｕ Ｘ Ｙ， ｅｔ ａｌ． Ｔｈｅ ｒｏｌｅ ｏｆ Ｎｒｆ２ ｉｎ ｔｈｅ
ｐａｔｈｏｇｅｎｅｓｉｓ ａｎｄ ｔｒｅａｔｍｅｎｔ ｏｆ ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ［Ｊ］ ． Ｆｒｏｎｔ
Ｉｍｍｕｎｏｌ， ２０２３， １４： １２００１１１．

［１６］ 　 白湘玉， 尤旭颖， 吴苏果， 等． 从肠道菌群视角探究经方治

疗溃疡性结肠炎的研究进展［Ｊ ／ ＯＬ］． 时珍国医国药： １⁃７
（２０２５⁃０９⁃１８） ［ ２０２５⁃０９⁃１９］． ｈｔｔｐｓ： ／ ／ ｌｉｎｋ． ｃｎｋｉ． ｎｅｔ ／ ｕｒｌｉｄ ／ ４２．
１４３６． Ｒ． ２０２５０９１６􀆰 １６２６􀆰 ００２．

［１７］ 　 Ｚｈａｎｇ Ｘ， Ｔｏｎｇ Ｙ Ｊ， Ｌｙｕ Ｘ Ｍ， ｅｔ ａｌ． Ｐｒｅｖｅｎｔｉｏｎ ａｎｄ
ａｌｌｅｖｉａｔｉｏｎ ｏｆ ｄｅｘｔｒａｎ ｓｕｌｆａｔｅ ｓｏｄｉｕｍ ｓａｌｔ⁃ｉｎｄｕｃｅｄ ｉｎｆｌａｍｍａｔｏｒｙ
ｂｏｗｅｌ ｄｉｓｅａｓｅ ｉｎ ｍｉｃｅ ｗｉｔｈ Ｂａｃｉｌｌｕｓ ｓｕｂｔｉｌｉｓ⁃ｆｅｒｍｅｎｔｅｄ ｍｉｌｋ ｖｉａ
ｉｎｈｉｂｉｔｉｏｎ ｏｆ ｔｈｅ ｉｎｆｌａｍｍａｔｏｒｙ ｒｅｓｐｏｎｓｅｓ ａｎｄ ｒｅｇｕｌａｔｉｏｎ ｏｆ ｔｈｅ
ｉｎｔｅｓｔｉｎａｌ ｆｌｏｒａ［Ｊ］ ． Ｆｒｏｎｔ Ｍｉｃｒｏｂｉｏｌ， ２０２１， １１： ６２２３５４．

［１８］ 　 Ｍａｋｋｉ Ｋ， Ｄｅｅｈａｎ Ｅ Ｃ， Ｗａｌｔｅｒ Ｊ， ｅｔ ａｌ． Ｔｈｅ ｉｍｐａｃｔ ｏｆ ｄｉｅｔａｒｙ
ｆｉｂｅｒ ｏｎ ｇｕｔ ｍｉｃｒｏｂｉｏｔａ ｉｎ ｈｏｓｔ ｈｅａｌｔｈ ａｎｄ ｄｉｓｅａｓｅ［Ｊ］ ． Ｃｅｌｌ Ｈｏｓｔ
Ｍｉｃｒｏｂｅ， ２０１８， ２３（６）： ７０５⁃７１５．

［１９］ 　 Ｌａｍａｓ Ｂ， Ｒｉｃｈａｒｄ Ｍ Ｌ， Ｌｅｄｕｃｑ Ｖ， ｅｔ ａｌ． ＣＡＲＤ９ ｉｍｐａｃｔｓ
ｃｏｌｉｔｉｓ ｂｙ ａｌｔｅｒｉｎｇ ｇｕｔ ｍｉｃｒｏｂｉｏｔａ ｍｅｔａｂｏｌｉｓｍ ｏｆ ｔｒｙｐｔｏｐｈａｎ ｉｎｔｏ
ａｒｙｌ ｈｙｄｒｏｃａｒｂｏｎ ｒｅｃｅｐｔｏｒ ｌｉｇａｎｄｓ［Ｊ］ ． Ｎａｔ Ｍｅｄ， ２０１６，
２２（６）： ５９８⁃６０５．

［２０］ 　 Ｇ􀆧ｒａｒｄ Ｐ． Ｍｅｔａｂｏｌｉｓｍ ｏｆ ｃｈｏｌｅｓｔｅｒｏｌ ａｎｄ ｂｉｌｅ ａｃｉｄｓ ｂｙ ｔｈｅ ｇｕｔ
ｍｉｃｒｏｂｉｏｔａ［Ｊ］ ． Ｐａｔｈｏｇｅｎｓ， ２０１３， ３（１）： １４⁃２４．

［２１］ 　 Ｌｕ Ｓ Ｙ， Ｄａｎ Ｌ Ｔ， Ｓｕｎ Ｓ Ｓ， ｅｔ ａｌ． Ｄｉｅｔａｒｙ ｑｕｅｒｃｅｔｉｎ ｉｎｔａｋｅ ｉｓ
ａｓｓｏｃｉａｔｅｄ ｗｉｔｈ ｌｏｗｅｒ ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｒｉｓｋ ｂｕｔ ｎｏｔ Ｃｒｏｈｎ’ ｓ
ｄｉｓｅａｓｅ ｉｎ ａ ｐｒｏｓｐｅｃｔｉｖｅ ｃｏｈｏｒｔ ｓｔｕｄｙ ａｎｄ ｉｎ ｖｉｖｏ
ｅｘｐｅｒｉｍｅｎｔｓ［Ｊ］ ． Ｆｏｏｄ Ｆｕｎｃｔ， ２０２４， １５（１２）： ６５５３⁃６５６４．

［２２］ 　 Ｇａｏ Ｆ， Ｚｈｕ Ｆ， Ｓｈｕａｉ Ｂ， ｅｔ ａｌ． Ｑｕｅｒｃｅｔｉｎ ａｍｅｌｉｏｒａｔｅｓ
ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｂｙ ｒｅｓｔｏｒｉｎｇ ｔｈｅ ｂａｌａｎｃｅ ｏｆ Ｍ２ ／ Ｍ１ ａｎｄ
ｒｅｐａｉｒｉｎｇ ｔｈｅ ｉｎｔｅｓｔｉｎａｌ ｂａｒｒｉｅｒ ｖｉａ ｄｏｗｎｒｅｇｕｌａｔｉｎｇ ｃＧＡＳ⁃ＳＴＩＮＧ
ｐａｔｈｗａｙ［Ｊ］ ． Ｆｒｏｎｔ Ｐｈａｒｍａｃｏｌ， ２０２４， １５： １３５１５３８．

［２３］ 　 Ｊｉａｎｇ Ｚ Ｙ， Ｙａｎ Ｍ Ｊ， Ｑｉｎ Ｙ Ｍ， ｅｔ ａｌ． Ｑｕｅｒｃｅｔｉｎ ａｌｌｅｖｉａｔｅｓ
ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｔｈｒｏｕｇｈ ｉｎｈｉｂｉｔｉｎｇ ＣＸＣＬ８⁃ＣＸＣＲ１ ／ ２ ａｘｉｓ： ａ
ｎｅｔｗｏｒｋ ａｎｄ ｔｒａｎｓｃｒｉｐｔｏｍｅ ａｎａｌｙｓｉｓ［Ｊ］ ． Ｆｒｏｎｔ Ｐｈａｒｍａｃｏｌ，
２０２４， １５： １４８５２５５．

［２４］ 　 Ｘｕ Ｄ， Ｈｕ Ｍ Ｊ， Ｗａｎｇ Ｙ Ｑ， ｅｔ ａｌ． Ａｎｔｉｏｘｉｄａｎｔ ａｃｔｉｖｉｔｉｅｓ ｏｆ
ｑｕｅｒｃｅｔｉｎ ａｎｄ ｉｔｓ ｃｏｍｐｌｅｘｅｓ ｆｏｒ ｍｅｄｉｃｉｎａｌ ａｐｐｌｉｃａｔｉｏｎ［Ｊ］ ．
Ｍｏｌｅｃｕｌｅｓ， ２０１９， ２４（６）： １１２３．

［２５］ 　 Ｌｉ Ｂ Ｌ， Ｇｕｏ Ｙ Ｘ， Ｊｉａ Ｘ Ｍ， ｅｔ ａｌ． Ｌｕｔｅｏｌｉｎ ａｌｌｅｖｉａｔｅｓ
ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｉｎ ｒａｔｓ ｖｉａ ｒｅｇｕｌａｔｉｎｇ ｉｍｍｕｎｅ ｒｅｓｐｏｎｓｅ，
ｏｘｉｄａｔｉｖｅ ｓｔｒｅｓｓ， ａｎｄ ｍｅｔａｂｏｌｉｃ ｐｒｏｆｉｌｉｎｇ［Ｊ］ ． Ｏｐｅｎ Ｍｅｄ
（Ｗａｒｓ）， ２０２３， １８（１）： ２０２３０７８５．

［２６］ 　 袁　 力， 纪建华， 李敏艳． 木犀草素调节 ＳＩＲＴ３ ／ ＡＭＰＫ ／
ｍＴＯＲ 信号通路对溃疡性结肠炎小鼠 Ｔｈ１７ ／ Ｔｒｅｇ 免疫平衡

的影 响［Ｊ］ ． 天 然 产 物 研 究 与 开 发， ２０２３， ３５ （ ７ ）：
１１４４⁃１１５３．

［２７］ 　 詹　 鑫， 徐　 帆， 祝　 钧， 等． 木犀草素的生理作用及制剂

研究进展［Ｊ］ ． 日用化学工业， ２０２３， ５３（４）： ４３７⁃４４４．

［２８］ 　 Ｍａ Ｓ Ｔ， Ｌｉｕ Ｊ Ｂ， Ｌｉ Ｙ Ｊ， ｅｔ ａｌ． Ｅｇｇ ｗｈｉｔｅ⁃ｄｅｒｉｖｅｄ ｐｅｐｔｉｄｅｓ
ｃｏ⁃ａｓｓｅｍｂｌｙ⁃ｒｅｉｎｆｏｒｃｅｄ ｚｅｉｎ ／ ｃｈｏｎｄｒｏｉｔｉｎ ｓｕｌｆａｔｅ ｎａｎｏｐａｒｔｉｃｌｅｓ ｆｏｒ
ｏｒａｌｌｙ ｃｏｌｏｎ⁃ｔａｒｇｅｔｅｄ ｃｏ⁃ｄｅｌｉｖｅｒｙ ｏｆ ｑｕｅｒｃｅｔｉｎ ｉｎ ｃｏｌｉｔｉｓ
ｍｉｔｉｇａｔｉｏｎ［Ｊ］ ． Ｆｏｏｄ Ｂｉｏｓｃｉ， ２０２５， ６５： １０６１６１．

［２９］ 　 Ｆｕ Ｗ Ｙ， Ｈｕａｎｇ Ｚ Ｓ， Ｌｉ Ｗ Ｑ， ｅｔ ａｌ． Ｃｏｐｐｅｒ⁃ｌｕｔｅｏｌｉｎ
ｎａｎｏｃｏｍｐｌｅｘｅｓ ｆｏｒ ｍｅｄｉａｔｉｎｇ ｍｕｌｔｉｆａｃｅｔｅｄ ｒｅｇｕｌａｔｉｏｎ ｏｆ ｏｘｉｄａｔｉｖｅ
ｓｔｒｅｓｓ， ｉｎｔｅｓｔｉｎａｌ ｂａｒｒｉｅｒ， ａｎｄ ｇｕｔ ｍｉｃｒｏｂｉｏｔａ ｉｎ ｉｎｆｌａｍｍａｔｏｒｙ
ｂｏｗｅｌ ｄｉｓｅａｓｅ［Ｊ］ ． Ｂｉｏａｃｔ Ｍａｔｅｒ， ２０２５， ４６： １１８⁃１３３．

［３０］ 　 陈　 阳， 马嘉仪， 张健榕， 等． 黄连中生物碱类成分抗溃疡

性结肠炎的作用机制研究进展［Ｊ］ ． 南京中医药大学学报，
２０２３， ３９（１２）： １２６０⁃１２６６．

［３１］ 　 王佳俊， 王　 建， 李　 勇， 等． 基于细胞信号通路探讨小檗

碱治疗溃疡性结肠炎研究进展［Ｊ］ ． 中国中药杂志， ２０２１，
４６（１）： ３３⁃４０．

［３２］ 　 Ｌｉ Ｈ， Ｆａｎ Ｃ， Ｌｕ Ｈ Ｍ， ｅｔ ａｌ． Ｐｒｏｔｅｃｔｉｖｅ ｒｏｌｅ ｏｆ ｂｅｒｂｅｒｉｎｅ ｏｎ
ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｔｈｒｏｕｇｈ ｍｏｄｕｌａｔｉｎｇ ｅｎｔｅｒｉｃ ｇｌｉａｌ ｃｅｌｌｓ⁃ｉｎｔｅｓｔｉｎａｌ
ｅｐｉｔｈｅｌｉａｌ ｃｅｌｌｓ⁃ｉｍｍｕｎｅ ｃｅｌｌｓ ｉｎｔｅｒａｃｔｉｏｎｓ［Ｊ］ ． Ａｃｔａ Ｐｈａｒｍ Ｓｉｎ
Ｂ， ２０２０， １０（３）： ４４７⁃４６１．

［３３］ 　 余飞浩， 吴甜甜， 栾思宇， 等． 苦参素干预 ＡＫＴ ／ ｍＴＯＲ 通路

调节记忆性 Ｂ 细胞治疗溃疡性结肠炎作用机制研究［Ｊ］ ．
时珍国医国药， ２０２３， ３４（３）： ５３７⁃５４１．

［３４］ 　 王　 帅． 氧化苦参碱抗溃疡性结肠炎焦亡机制探讨［Ｄ］．
大连： 大连理工大学， ２０２２．

［３５］ 　 Ｄｅｎｇ Ｃ， Ｚｈａｎｇ Ｈ Ｘ， Ｌｉ Ｙ Ｘ， ｅｔ ａｌ． Ｅｘｏｓｏｍｅｓ ｄｅｒｉｖｅｄ ｆｒｏｍ
ｍｅｓｅｎｃｈｙｍａｌ ｓｔｅｍ ｃｅｌｌｓ ｃｏｎｔａｉｎｉｎｇ ｂｅｒｂｅｒｉｎｅ ｆｏｒ ｕｌｃｅｒａｔｉｖｅ
ｃｏｌｉｔｉｓ ｔｈｅｒａｐｙ［Ｊ］ ． Ｊ Ｃｏｌｌｏｉｄ Ｉｎｔｅｒｆａｃｅ Ｓｃｉ， ２０２４， ６７１：
３５４⁃３７３．

［３６］ 　 Ｗａｎ Ｑ， Ｈｕａｎｇ Ｊ Ｑ， Ｘｉａｏ Ｑ Ｐ， ｅｔ ａｌ． Ａｓｔｒａｇａｌｕｓ
ｐｏｌｙｓａｃｃｈａｒｉｄｅ ａｌｌｅｖｉａｔｅｓ ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｂｙ ｒｅｇｕｌａｔｉｎｇ ｔｈｅ
ｂａｌａｎｃｅ ｏｆ ｍＴｈ１７ ／ ｍＴｒｅｇ ｃｅｌｌｓ ｔｈｒｏｕｇｈ ＴＩＧＩＴ ／ ＣＤ１５５
ｓｉｇｎａｌｉｎｇ［Ｊ］ ． Ｍｏｌｅｃｕｌｅｓ， ２０２４， ２９（１）： ２４１．

［３７］ 　 Ｄｅｎｇ Ｙ Ｆ， Ｓｏｎｇ Ｌ Ｚ， Ｈｕａｎｇ Ｊ Ｑ， ｅｔ ａｌ． Ａｓｔｒａｇａｌｕｓ
ｐｏｌｙｓａｃｃｈａｒｉｄｅｓ ａｍｅｌｉｏｒａｔｅｓ ｅｘｐｅｒｉｍｅｎｔａｌ ｃｏｌｉｔｉｓ ｂｙ ｒｅｇｕｌａｔｉｎｇ
ｍｅｍｏｒｙ Ｂ ｃｅｌｌｓ ｍｅｔａｂｏｌｉｓｍ［Ｊ］ ． Ｃｈｅｍ Ｂｉｏｌ Ｉｎｔｅｒａｃｔ， ２０２４，
３９４： １１０９６９．

［３８］ 　 宋　 艳， 何永恒， 杨　 芳， 等． 黄芪多糖调节脂联素 ／ ＴＬＲ ／
ＮＦ⁃κＢ 信号通路对溃疡性结肠炎小鼠的治疗作用［Ｊ］ ． 中国

免疫学杂志， ２０２１， ３７（１１）： １３１９⁃１３２４．
［３９］ 　 梁桐尔， 刘杨洋， 王　 烜． 基于 ＩＬ⁃３３ ／ ＳＴ２ 信号通路的茯苓

多糖调控溃疡性结肠炎大鼠肥大细胞活化的机制研究［Ｊ］ ．
中国免疫学杂志， ２０２０， ３６（１１）： １３２４⁃１３２９； １３３７．

［４０］ 　 房　 悦． 茯苓多糖通过调节狄氏副拟杆菌恢复 Ｔｈ１７ ／ Ｔｒｅｇ 免

疫平衡改善溃疡性结肠炎的作用机制研究［Ｄ］． 合肥：
安徽中医药大学， ２０２５．

［４１］ 　 张海涛． 多糖类化合物抗氧化作用及其机制的研究进

展［Ｊ］ ． 天津药学， ２０１７， ２９（３）： ６０⁃６３．
［４２］ 　 王　 峰， 何　 佳， 王林园， 等． 羧甲基茯苓多糖对溃疡性结

肠炎大鼠的研究［Ｊ］ ． 中国临床药理学杂志， ２０２２， ３８（１２）：
１３６８⁃１３７２．

［４３］ 　 Ｓｈｉ Ｊ Ｙ， Ｗａｎｇ Ｙ Ｊ， Ｂａｏ Ｑ Ｗ， ｅｔ ａｌ． Ｐｏｌｙｇｏｎａｔｕｍ ｃｙｒｔｏｎｅｍａ
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ｒｅｓｐｏｎｓｅ［Ｊ］ ． Ｃａｒｂｏｈｙｄｒ Ｐｏｌｙｍ， ２０２５， ３５６： １２３３８７．
［４４］ 　 杨佳欣， 杜廷海， 张　 诚． 黄精及其药对的研究进展［Ｊ ／ ＯＬ］．

中华中医药学刊： １⁃１３ （２０２５⁃０９⁃１２） ［２０２５⁃１０⁃１４］． ｈｔｔｐｓ： ／ ／
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ｌｙｍｐｈｏｉｄ ｃｅｌｌｓ［Ｊ］ ． Ｊ Ｐｈａｒｍ Ａｎａｌ， ２０２４， １４（６）： １００９４０．

［４６］ 　 Ｈｕ Ｑ Ｃ， Ｘｉｅ Ｊ， Ｊｉａｎｇ Ｔ， ｅｔ ａｌ． Ｐａｅｏｎｉｆｌｏｒｉｎ ａｌｌｅｖｉａｔｅｓ ＤＳＳ⁃
ｉｎｄｕｃｅｄ ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｂｙ ｓｕｐｐｒｅｓｓｉｎｇ ｉｎｆｌａｍｍａｔｉｏｎ， ｏｘｉｄａｔｉｖｅ
ｓｔｒｅｓｓ， ａｎｄ ａｐｏｐｔｏｓｉｓ ｖｉａ ｒｅｇｕｌａｔｉｎｇ ｓｅｒｕｍ ｍｅｔａｂｏｌｉｔｅｓ
ａｎｄ ｉｎｈｉｂｉｔｉｎｇ ＣＤＣ４２ ／ ＪＮＫ ｓｉｇｎａｌｉｎｇ ｐａｔｈｗａｙ［Ｊ］ ． Ｉｎｔ
Ｉｍｍｕｎｏｐｈａｒｍａｃｏｌ， ２０２４， １４２： １１３０３９．

［４７］ 　 Ｚｈｅｎｇ Ｌ Ｘ， Ｇｕｏ Ｋ Ｅ， Ｈｕａｎｇ Ｊ Ｑ， ｅｔ ａｌ． Ｃｕｒｃｕｍｉｎ ａｌｌｅｖｉａｔｅｄ
ｄｅｘｔｒａｎ ｓｕｌｆａｔｅ ｓｏｄｉｕｍ⁃ｉｎｄｕｃｅｄ ｃｏｌｉｔｉｓ ｂｙ ｒｅｃｏｖｅｒｉｎｇ ｍｅｍｏｒｙ Ｔｈ ／
Ｔｆｈ ｓｕｂｓｅｔ ｂａｌａｎｃｅ［Ｊ］ ． Ｗｏｒｌｄ Ｊ Ｇａｓｔｒｏｅｎｔｅｒｏｌ， ２０２３， ２９（３６）：
５２２６⁃５２３９．

［４８］ 　 Ｚｈａｎｇ Ｘ Ｌ， Ｚｈａｎｇ Ｈ， Ｗａｎｇ Ｊ Ｔ， ｅｔ ａｌ． Ｃｕｒｃｕｍｉｎ ａｔｔｅｎｕａｔｅｓ
ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｖｉａ ｒｅｇｕｌａｔｉｏｎ ｏｆ Ｓｐｈｉｎｇｏｓｉｎｅ ｋｉｎａｓｅｓ １ ／ ＮＦ⁃κＢ
ｓｉｇｎａｌｉｎｇ ｐａｔｈｗａｙ［Ｊ］ ． Ｂｉｏｆａｃｔｏｒｓ， ２０２５， ５１（１）： ｅ７０００１．

［４９］ 　 Ｍｏｈｓｅｎｉ Ｓ， Ｔａｖａｋｏｌｉ Ａ， Ｇｈａｚｉｐｏｏｒ Ｈ， ｅｔ ａｌ． Ｃｕｒｃｕｍｉｎ ｆｏｒ ｔｈｅ
ｃｌｉｎｉｃａｌ ｔｒｅａｔｍｅｎｔ ｏｆ ｉｎｆｌａｍｍａｔｏｒｙ ｂｏｗｅｌ ｄｉｓｅａｓｅｓ： ａ ｓｙｓｔｅｍａｔｉｃ
ｒｅｖｉｅｗ ａｎｄ ｍｅｔａ⁃ａｎａｌｙｓｉｓ ｏｆ ｐｌａｃｅｂｏ⁃ｃｏｎｔｒｏｌｌｅｄ ｒａｎｄｏｍｉｚｅｄ
ｃｌｉｎｉｃａｌ ｔｒｉａｌｓ［Ｊ］ ． Ｆｒｏｎｔ Ｎｕｔｒ， ２０２５， １２： １４９４３５１．

［５０］ 　 Ｂａｉ Ｙ Ｙ， Ｃｈｅｎ Ｔ， Ｚｈａｎｇ Ｙ， ｅｔ ａｌ． Ｕｌｔｒａｆａｓｔ ｉｎ ｓｉｔｕ ｆｏｒｍｅｄ
ｒｏｂｕｓｔ ａｎｄ ａｄｈｅｓｉｖｅ ｐｈｏｔｏ⁃ｃｒｏｓｓｌｉｎｋｅｄ ｈｙｄｒｏｇｅｌ ｅｎｃａｐｓｕｌａｔｉｎｇ
ｃｕｒｃｕｍｉｎ ｆｏｒ ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ａｌｌｅｖｉａｔｉｏｎ ｖｉａ ｒｅｇｕｌａｔｉｎｇ
ｉｎｆｌａｍｍａｔｉｏｎ ａｎｄ ｇｕｔ ｍｉｃｒｏｂｉｏｔａ［Ｊ］ ． Ｍａｔｅｒ Ｔｏｄａｙ Ｂｉｏ， ２０２５，
３５： １０２３１２．

［５１］ 　 Ｌｉｕ Ｔ， Ｆａｎ Ｓ Ｑ， Ｍｅｎｇ Ｐ Ｆ， ｅｔ ａｌ． Ｄｉｅｔａｒｙ ｄｉｈｙｄｒｏｑｕｅｒｃｅｔｉｎ
ａｌｌｅｖｉａｔｅｄ ｃｏｌｉｔｉｓ ｖｉａ ｔｈｅ ｓｈｏｒｔ⁃ｃｈａｉｎ ｆａｔｔｙ ａｃｉｄｓ ／ ｍｉＲ⁃１０ａ⁃５ｐ ／
ＰＩ３Ｋ⁃Ａｋｔ ｓｉｇｎａｌｉｎｇ ｐａｔｈｗａｙ［Ｊ］ ． Ｊ Ａｇｒｉｃ Ｆｏｏｄ Ｃｈｅｍ， ２０２４，
７２（４２）： ２３２１１⁃２３２２３．

［５２］ 　 Ｙｅ Ｑ Ｊ， Ｈｕａｎｇ Ｓ Ｗ， Ｗａｎｇ Ｙ， ｅｔ ａｌ． Ｗｏｇｏｎｉｎ ｉｍｐｒｏｖｅｓ ｃｏｌｉｔｉｓ
ｂｙ ａｃｔｉｖａｔｉｎｇ ｔｈｅ ＡｈＲ ｐａｔｈｗａｙ ｔｏ ｒｅｇｕｌａｔｅ ｔｈｅ ｐｌａｓｔｉｃｉｔｙ ｏｆ ＩＬＣ３ ／
ＩＬＣ１［Ｊ］ ． Ｐｈｙｔｏｍｅｄｉｃｉｎｅ， ２０２４， １２８： １５５４２５．

［５３］ 　 Ｚｏｕ Ｙ Ｘ， Ｄｉｎｇ Ｗ Ｊ， Ｗｕ Ｙ， ｅｔ ａｌ． Ｐｕｅｒａｒｉｎ ａｌｌｅｖｉａｔｅｓ
ｉｎｆｌａｍｍａｔｉｏｎ ａｎｄ ｐａｔｈｏｌｏｇｉｃａｌ ｄａｍａｇｅ ｉｎ ｃｏｌｉｔｉｓ ｍｉｃｅ ｂｙ
ｒｅｇｕｌａｔｉｎｇ ｍｅｔａｂｏｌｉｓｍ ａｎｄ ｇｕｔ ｍｉｃｒｏｂｉｏｔａ［Ｊ］ ． Ｆｒｏｎｔ Ｍｉｃｒｏｂｉｏｌ，
２０２３， １４： １２７９０２９．

［５４］ 　 Ｚｈａｎｇ Ｊ Ｌ， Ｚｈａｎｇ Ｍ Ｎ， Ｗａｎｇ Ｈ Ｇ， ｅｔ ａｌ． Ｊａｔｒｏｒｒｈｉｚｉｎｅ

ａｌｌｅｖｉａｔｅｓ ｕｌｃｅｒａｔｉｖｅ ｃｏｌｉｔｉｓ ｖｉａ ｒｅｇｕｌａｔｉｎｇ ｇｕｔ ｍｉｃｒｏｂｉｏｔａ ａｎｄ
ＮＯＳ２ ｅｘｐｒｅｓｓｉｏｎ［Ｊ］ ． Ｇｕｔ Ｐａｔｈｏｇ， ２０２２， １４（１）： ４１．

［５５］ 　 谢佳辰， 杨　 艺， 李昆蔚， 等． 基于 ＵＰＬＣ⁃Ｑ ／ ＴＯＦ⁃ＭＳ 代谢

组学技术探究药根碱治疗溃疡性结肠炎模型小鼠的作用机

制［Ｊ］ ． 中草药， ２０２５， ５６（５）： １６１７⁃１６２７．
［５６］ 　 Ｙａｎ Ｓ Ｈ， Ｃｈａｎｇ Ｊ Ｙ， Ｈａｏ Ｘ Ｈ， ｅｔ ａｌ． Ｂｅｒｂｅｒｉｎｅ ｒｅｇｕｌａｔｅｓ

ｓｈｏｒｔ⁃ｃｈａｉｎ ｆａｔｔｙ ａｃｉｄ ｍｅｔａｂｏｌｉｓｍ ａｎｄ ａｌｌｅｖｉａｔｅｓ ｔｈｅ ｃｏｌｉｔｉｓ⁃
ａｓｓｏｃｉａｔｅｄ ｃｏｌｏｒｅｃｔａｌ ｔｕｍｏｒｉｇｅｎｅｓｉｓ ｔｈｒｏｕｇｈ ｒｅｍｏｄｅｌｉｎｇ ｉｎｔｅｓｔｉｎａｌ
ｆｌｏｒａ［Ｊ］ ． Ｐｈｙｔｏｍｅｄｉｃｉｎｅ， ２０２２， １０２： １５４２１７．

［５７］ 　 Ｓｕｎ Ｘ Ｊ， Ｚｈａｎｇ Ｙ， Ｃｈｅｎｇ Ｇ， ｅｔ ａｌ． Ｂｅｒｂｅｒｉｎｅ ｉｍｐｒｏｖｅｓ ＤＳＳ⁃
ｉｎｄｕｃｅｄ ｃｏｌｉｔｉｓ ｉｎ ｍｉｃｅ ｂｙ ｍｏｄｕｌａｔｉｎｇ ｔｈｅ ｆｅｃａｌ⁃ｂａｃｔｅｒｉａ⁃ｒｅｌａｔｅｄ
ｂｉｌｅ ａｃｉｄ ｍｅｔａｂｏｌｉｓｍ［Ｊ］ ． Ｂｉｏｍｅｄ Ｐｈａｒｍａｃｏｔｈｅｒ， ２０２３， １６７：
１１５４３０．

［５８］ 　 徐　 锋， 朱　 磊， 李亚楠， 等． 基于肠道菌群及代谢组学探

讨白芷多糖对溃疡性结肠炎小鼠的治疗及其作用机制［Ｊ］ ．
中国中药杂志， ２０２５， ５０（４）： ８９６⁃９０７．
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