「质量]

UHPLC-MS/MS 法同时测定蒲地蓝消炎片中 10 种成分

米建萍^{1,2}, 庞 倩^{2,3}, 徐远金^{2,3}*

(1. 北海市疾病预防控制中心,广西 北海 536000; 2. 亚热带农业生物资源保护与利用国家重点实验室, 广西 南宁 530004; 3. 广西大学化学化工学院,广西 南宁 530004)

摘要:目的 建立超高效液相色谱-串联质谱(UHPLC-MS/MS)法同时测定蒲地蓝消炎片(蒲公英、黄芩、苦地丁和板蓝根)中腺苷、表告依春、咖啡酸、绿原酸、阿魏酸、紫堇灵、乙酰紫堇灵、芹菜素、黄芩素和汉黄芩素的含有量。方法 分析采用 Eclipse Plus C_{18} RRHD 色谱柱(1.8 μ m, 2.1 mm×50 mm);流动相为乙腈-0.2% 乙酸水溶液,梯度洗脱;体积流量为 0.3 mL/min。结果 10 种成分分别在 0.000 050 0 ~ 1.00、0.010 0 ~ 5.00、0.015 0 ~ 10.0、0.030 0 ~ 20.0、0.100 ~ 100、0.000 300 ~ 10.0、0.003 00 ~ 10.0、0.000 600 ~ 20.0、0.200 ~ 20.0、0.000 500 ~ 5.00 mg/L范围内线性关系良好,平均加样回收率在 91.4% ~ 105.0% 之间,RSD 均小于 2.0%。结论 该方法快速、简便、灵敏,适用于蒲地蓝消炎片的质量控制。

关键词: 蒲地蓝消炎片; 化学成分; UHPLC-MS/MS

中图分类号: R927.2

文献标志码: A

文章编号: 1001-1528(2016)06-1269-05

doi:10.3969/j.issn.1001-1528.2016.06.014

Simultaneous determination of ten constituents in Pudilan Xiaoyan Tablets by UHPLC-MS/MS

MI Jian-ping^{1,2}, PANG Qian^{2,3}, XU Yuan-jin^{2,3}*

(1. Beihai Municipal Center for Disease Control and Prevention, Beihai 536000, China; 2. State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530004, China; 3. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China)

ABSTRACT: AIM To establish an ultra performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of adenosine, epigoitrin, caffeic acid, chlorogenic acid, ferulic acid, corynoline, acetylcorynoline, apiginin, baicalein and wogonin in Pudilan Xiaoyan Tablets (*Taraxaci Herba*, *Scutellariae Radix*, *Corydalis Bungeanae Herba* and *Isatidis Radix*). **METHODS** The analysis was performed on an Eclipse Plus C₁₈ RRHD column (1.8 μm, 2.1 mm × 50 mm), with a mobile phase comprising of acetonitrile-0. 2% acetic acid aqueous solution in a gradient elution manner, at a flow rate of 0.3 mL/min. **RE-SULTS** Ten constituents showed good linear relationships within the ranges of 0.000 050 0 – 1.00 mg/L, 0.010 0 – 5.00 mg/L, 0.015 0 – 10.0 mg/L, 0.030 0 – 20.0 mg/L, 0.100 – 100 mg/L, 0.000 300 – 10.0 mg/L, 0.003 00 – 10.0 mg/L, 0.000 600 – 20.0 mg/L, 0.200 – 20.0 mg/L and 0.000 500 – 5.00 mg/L, respectively, whose average recoveries were 91.4% – 105.0% with the RSDs of less than 2.0%.

CONCLUSION This rapid, simple and sensitive method suits the quality control of Pudilan Xiaoyan Tablets. **KEY WORDS:** Pudilan Xiaoyan Tablets; chemical constituents; UHPLC-MS/MS

蒲地蓝消炎片由蒲公英、黄芩、苦地丁和板蓝根4种中药组成,主要功效为清热解毒,抗炎消肿,用于治疗疖肿、咽炎、扁桃腺炎,腮腺炎等。

方中蒲公英性寒,味苦、甘,有清热解毒、消肿散结、利尿通淋等功效;黄芩有清热燥湿、泻火解毒、止血、安胎等功效,用于治疗湿温、暑湿、胸

收稿日期: 2015-08-07

基金项目: 国家自然科学基金项目 (21264003)

作者简介:米建萍(1972—),女,硕士,副主任技师,从事理化检验工作。Tel: 13507796184, E-mail: mjp100@ sina. com

* 通信作者: 徐远金 (1964—), 男, 博士, 教授, 从事色谱分析方法研究。Tel: (0771) 3237743, E-mail; yjxu@ gxu. edu. cn

闷呕恶、湿热痞满、泻痢、黄疸、肺热咳嗽、高热烦渴、血热吐衄、痈肿疮毒、胎动不安; 板蓝根具有清热解毒、凉血消肿、利咽之功效,用于治疗温疫时毒、发热咽痛、温毒发斑、痄腮、丹毒、臃肿疮毒等; 苦地丁清热解毒、消痈肿,主治流行性感冒、上呼吸道感染、扁桃体炎、传染性肝炎、肠炎、肾炎、瘰疬、腮腺炎、结膜炎、急性阑尾炎及疔疮痈肿等[1]。

已有文献报道, 黄芩中的黄酮[23]、蒲公英中 的酚酸和黄酮[4-5]、苦地丁中的生物碱[6]、板蓝根 中的腺苷和表告依春[7-8]等为主要活性物质。现行 药典标准常用 HPLC 法进行中药质量控制指标的单 一含有量分析,没有多种有效成分同时测定的方 法。蒲地蓝制剂相关文献大多集中在临床使用及疗 效观察方面,鲜有成分测定的报道,胡冰[9]采用 测定了腺苷的含有量, 邵礼梅等[10] 对黄芩苷和黄 芩素进行了测定,汤道权等[11]测定了黄芩苷的含 有量, 刘德胜等[12] 对不同制剂中咖啡酸和绿原酸 的含有量进行了测定, 覃华亮[13] 建立了测定紫堇 灵含有量的方法,但同时测定多种成分的文 献[14-15] 较少,也尚无液相色谱-质谱联用分析方法 的报道。本实验采用超高效液相色谱-串联质谱 (UHPLC-MS/MS) 法同时测定蒲地蓝消炎片中腺 昔、表告依春、咖啡酸、绿原酸、阿魏酸、紫堇 灵、乙酰紫堇灵、芹菜素、黄芩素和汉黄岑素,其 简便快速,已用于实际样品的分析。

1 实验部分

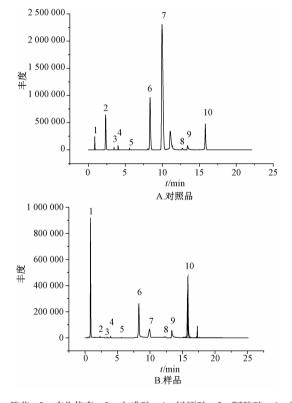
1.1 仪器与试剂 Agilent 1290 Infinity LC System、Agilent 6460 Triple Quad LC/MS 仪 (美国 Agilent 公司); Synthesis A10[™]超纯水系统 (美国 Millipore 公司); ME2355、CPA2245 电子天平 (德国 Sartorius 公司); KQ2200DV 数控超声波清洗器 (昆山市超声仪器有限公司, 100 W, 40 kHz)。

腺苷(批号110879-200202)、咖啡酸(批号110885-200102)、阿魏酸(批号110773-200611)对照品(中国食品药品检定研究院,含有量≥98%);芹菜素对照品(批号101207,四川省维克奇生物科技有限公司,含有量≥98%);表告依春(批号130816)、绿原酸(批号121125)、紫堇灵(批号130604)、乙酰紫堇灵(批号130604)、黄芩素(批号130119)、汉黄芩素(批号131121)对照品(成都菲普德生物科技有限公司,含有量≥98%)。甲醇、乙腈为色谱纯(美国Fisher公司); 口酸为分析纯(广东光华科技股份有限公司);乙

酸为分析纯(上海申博化工有限公司);实验用水为超纯水。

1.2 溶液配制

- 1.2.1 对照品贮备液 精密称取腺苷、表告依春、绿原酸、咖啡酸、阿魏酸、紫堇灵、乙酰紫堇灵、芹菜素、黄芩素和汉黄芩素对照品各 10.0 mg, 甲醇溶解并定容至 10 mL 量瓶中, 配成 1.00 mg/mL贮备液, 4℃下保存。使用前,50% 甲醇溶液稀释至所需质量浓度。
- 1.2.2 样品溶液 取蒲地蓝消炎片适量,除去糖 衣,取内容物研磨粉碎,混匀。精密称取 0.5 g,置于具塞锥形瓶中,加入 50 mL 50% 甲醇溶液摇匀,超声 60 min,静置,冷却后取适量上清液,12 000 r/min离心 10 min,稀释 10 倍,0.22 μm 微孔滤膜过滤,进样测定。
- 1.3 色谱条件 Eclipse Plus C_{18} RRHD 色谱柱 $(1.8 \mu m, 2.1 \text{ mm} \times 50 \text{ mm})$; 流动相乙腈 (A) 0.2% 乙酸水溶液 (B), 梯度洗脱 $(0 \sim 1 \text{ min}, 95\% B$; $1 \sim 5 \text{ min}, 95\% \sim 80\% B$; $5 \sim 9 \text{ min}, 80\%$ B; $9 \sim 10 \text{ min}, 80\% \sim 75\% B$; $10 \sim 15 \text{ min}, 75\% \sim 60\% B$; $15 \sim 17 \text{ min}, 60\% \sim 0\% B$); 体积流量0.3 mL/min; 进样量 $1 \mu L_{\odot}$
- 1.4 质谱条件 离子源为电喷雾电离源 (ESI), 正、负离子快速切换多重反应监测模式 (MRM) 监测; 干燥气体 N_2 , 温度 300 ℃, 体积流量 10 L/min; 雾化气体 N_2 , 雾化器压力 2.8 × 10^5 Pa; 鞘气气体 N_2 , 温度 360 ℃, 体积流量 12 L/min; 毛细管电压 4 000 V。


2 结果

- 2.1 色谱与质谱行为 在选定的条件下,根据峰保留时间及质谱信息进行定性与定量分析。结果见图 1。
- 2.2 线性关系及检由限 取各对照品贮备液,精密配制不同质量浓度的混合标准溶液,于优化条件下进样测定,重复 3 次,以峰面积 (Y) 对质量浓度 (X) 进行回归,得到回归方程、相关系数和线性范围,信噪比 (S/N) 等于 3 时对应成分的质量浓度作为其检出限,具体见表 1,表明各成分在相应范围内线性关系良好。
- 2.3 精密度试验 取同一批次样品 6 份,制备样品提取液,在优化条件下测得各成分的平均含有量分别为 0.560 6、0.031 7、0.677 7、0.601 2、0.148 0、0.239 4、0.031 8、0.008 2、9.844 8、1.591 2 mg/g, RSD 为 0.33% ~ 2.0%,表明仪器

回归方程、线性范围、相关系数及检出限

Tab. 1 Regression equations, linear ranges, correlation coefficients and detection limits

成分	线性方程	线性范围/(mg·L ⁻¹)	相关系数	检出限/(mg·L ⁻¹)
腺苷	$Y = 6.5 \times 10^6 X - 4.49 \times 10^3$	0.000 050 0 ~ 1.00	0. 999 9	0.000 01
表告依春	$Y = 7.3 \times 10^5 X - 6.86 \times 10^3$	0.010 0 ~ 5.00	0. 999 6	0.003 00
咖啡酸	$Y = 6.1 \times 10^4 X + 7.83 \times 10^3$	0. 015 0 ~ 10. 0	0. 999 4	0.005 00
绿原酸	$Y = 1.2 \times 10^4 X + 2.06 \times 10^3$	0. 030 0 ~ 20. 0	0. 999 5	0.0100
阿魏酸	$Y = 3.7 \times 10^3 X - 59.6$	0. 100 ~ 100	0. 999 9	0.0300
紫堇灵	$Y = 5.9 \times 10^6 X + 6.60 \times 10^4$	0.000 300 ~ 10.0	0. 998 9	0.000 100
乙酰紫堇灵	$Y = 5.9 \times 10^6 X + 3.70 \times 10^4$	0.003 00 ~ 10.0	0. 999 5	0.00100
芹菜素	$Y = 2. \ 1 \times 10^4 X - 18. \ 4$	0.006 00 ~ 20.0	0. 999 6	0.00200
黄芩素	$Y = 9.2 \times 10^4 X - 1.03 \times 10^4$	0. 200 ~ 20. 0	0.9998	0.0500
汉黄芩素	$Y = 3.2 \times 10^6 X + 1.80 \times 10^4$	0.000 500 ~ 5.00	0. 999 4	0.000 200

1. 腺苷 2. 表告依春 3. 咖啡酸 4. 绿原酸 5. 阿魏酸 6. 紫 堇灵 7. 乙酰紫堇灵 8. 芹菜素 9. 黄芩素 10. 汉黄芩素 1. adenosine 2. epigoitrin 3. caffeic acid 4. chlorogenic acid 5. ferulic acid 6. corynoline 7. acetylcorynoline 8. apiginin 9. baicalein 10. wogonin

MRM 色谱图

Fig. 1 Multiple reaction monitoring (MRM) chromatograms

精密度良好。

2.4 稳定性试验 取同一批次样品,制备样品提 取液,在0、2、4、6、8、10 h 于优化条件下测得 RSD 为 0.7% ~ 2.3%, 表明样品溶液在 10 h 内 稳定。

回收率试验 精密称取各成分含有量已知的 的同批次样品 0.5 g, 共 9 份, 每组 3 份, 按高、 中、低3个梯度分别加入不同量的对照品,按 "1.2.2" 项下方法制备样品溶液并进行测定,结 果见表2。

加样回收率试验结果 (n=3)

Tab. 2 Results of recovery tests (n = 3)

					•	
成分	称样量/	原有量/	加入量/	测得量/	回收率/	'RSD/
	g	(mg·L ⁻¹)	$(mg \cdot L^{-1})$	$(mg \cdot L^{-1})$	%	%
腺苷	0.500 3	0.5606	0.4000	0. 926 1	91.4	2. 8
	0.5000	0.5606	0.5000	1.037 0	95. 3	2. 2
	0.5004	0.5606	0.6000	1. 183 2	103.8	2.7
表告依春	0.500 3	0.0317	0.0200	0.0527	105.0	1.7
	0.5000	0.0317	0.0300	0.063 2	105.0	0.88
	0.5004	0.0317	0.0400	0.0722	101.3	1.0
咖啡酸	0.500 3	0.677 7	0.5000	1. 193 8	103. 2	2.8
	0.5000	0.677 7	0.8000	1.507 9	103.8	2.0
	0.5004	0.677 7	1.0000	1.669 5	99. 2	0. 23
绿原酸	0.500 3	0.6012	0.5000	1.076 6	95. 1	3.0
	0.5000	0.6012	1.0000	1.5624	96. 1	2.6
	0.5004	0.6012	1.5000	2. 107 7	100.4	1.5
阿魏酸	0.500 3	0. 148 0	0.1000	0. 248 8	100.8	1.5
	0.5000	0. 148 0	0.2000	0.3512	101.6	1. 1
	0.5004	0. 148 0	0.3000	0.444 8	98. 9	0.73
紫堇灵	0.500 3	0. 239 4	0.1000	0.3405	101.1	1.3
	0.5000	0. 239 4	0. 200 0	0.4489	104. 8	1.2
	0.5004	0. 239 4	0.3000	0. 547 7	102. 8	0.75
乙酰紫	0.500 3	0.0318	0.0800	0.1087	96. 1	1. 2
堇灵	0.500 0	0.0318	0.1000	0. 129 3	97. 5	0.70
	0.5004	0.0318	0.1200	0. 155 9	103.4	0.73
芹菜素	0.500 3	0.008 2	0.1000	0. 105 3	97. 1	2. 2
	0.500 0	0.008 2	0.5000	0.5099	100. 3	1. 1
	0.5004	0.008 2	1.0000	1.034 1	102.6	2.0
黄芩素	0.500 3	9.8463	2.0000	11.8769	101.6	1.2
	0.500 0	9.8463	5.000 0	14. 773 1	98. 6	1.7
	0.5004	9.8463	10.0000	19.462 2	96. 2	2.6
汉黄芩素	0.500 3	1. 594 0	0.5000	2. 098 6	101.5	2.6
	0.500 0	1. 594 0	1.0000	2. 580 7	99.0	2. 3
	0.5004	1. 594 0	2.0000	3. 517 4	96. 3	2. 9

2.6 含有量测定 精密称取 4 批样品,每批 3 份,按照优化的提取方法和条件计算各成分的含有量,结果见表 3。

3 讨论

3.1 色谱条件的优化 实验发现,在流动相中添加低质量浓度的有机酸有利于各成分的分离,并且峰形对称;在流动相中添加甲酸时,能大幅度提高咖啡酸和绿原酸的检测灵敏度,但降低了其他成分的灵敏度;添加乙酸时,两者灵敏度随乙酸用量增加而提高。

另外,还对常用流动相甲醇-0.2% 乙酸水溶液和乙腈-0.2% 乙酸水溶液体系进行了考察,发现使用甲醇体系时,绿原酸、咖啡酸的灵敏度明显提高,但其他成分的灵敏度有所降低。综合考虑各成分的分离效果、检测灵敏度、色谱峰峰形等因素,选择乙腈-0.2% 乙酸水溶液作为流动相进行梯度洗脱。

- 3.2 质谱条件的优化 根据不同物质,先选择正 负离子反应模式,得到二级质谱特征离子图,见图 2。再采用多重反应监测模式(MRM),分别对各 对照品的母离子进行二次碎裂,对选定的子离子优 化源内碎裂电压、碰撞能量和加速电压,优化结果 见表 4。
- 3.3 样品提取方法 取蒲地蓝消炎片适量,除去糖衣,研碎,混匀,称取 0.5 g,置于不同具塞锥形瓶中,分别加入 50 mL 乙醇、50% 乙醇、乙腈、50% 乙腈、甲醇、75% 甲醇、50% 甲醇、25% 甲醇、水,密闭摇匀,超声 60 min。静置,取上清液,12 000 r/min 离心 10 min,稀释 10 倍,0.22 μm微孔滤膜过滤,进样测定。同时,还考察了 15、30、45、60、90、120 min 提取时间对提取效果的影响。最终,本实验选择 50% 甲醇,超声60 min 提取样品。

4 结论

UHPLC-MS/MS 结合了 UHPLC 分离度高、分析速度快,以及 MS 定性能力强、灵敏度高的优点,对中药及其制剂等复杂体系和样品的分析具有明显优势,为中药成分分析、质量控制及药代动力学研究提供了高效可靠的方法,已得到广泛应用。

本实验建立了 UHPLC-MS/MS 法同时测定蒲地 蓝消炎片中腺苷、表告依春、咖啡酸、绿原酸、阿 魏酸、紫堇灵、乙酰紫堇灵、芹菜素、黄芩素、汉 黄芩素 10 种有效成分含有量的分析方法,其简便、 快速、灵敏度高,可用于该药物的质量控制。

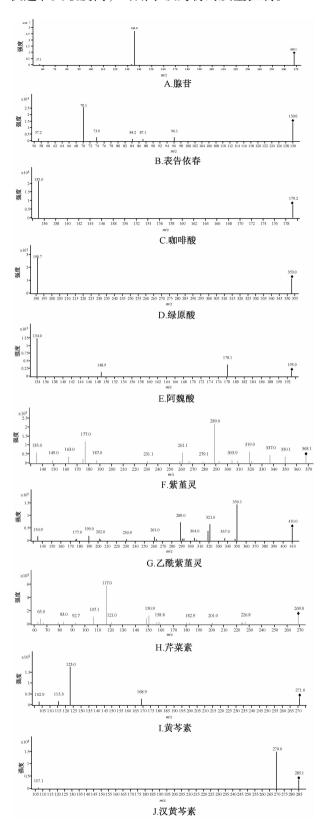


图 2 二级质谱图 Fig. 2 MS/MS spectra

含有量测定结果 (mg/g)

Tab. 3 Results of content determination (mg/g)

批号	腺苷	表告依春	咖啡酸	绿原酸	阿魏酸	紫堇灵	乙酰紫堇灵	芹菜素	黄芩素	汉黄芩素
BX1#	0.5606	0.0317	0.677 7	0.6012	0.148 0	0. 239 4	0. 031 8	0.0082	9. 844 8	1. 591 2
BY2#	0.563 0	0.038 5	0.5823	0.504 1	0. 202 8	0. 254 9	0.056 5	0.0080	6. 100 8	0.6890
XZ3#	0. 270 5	0.022 3	0.069 3	0. 122 4	0.1191	0.174 1	0. 143 6	0.0068	2.9124	0. 971 6
XT4#	0. 288 9	0.025 7	0.0788	0. 218 9	0. 101 6	0. 131 6	0. 128 5	0.006 5	3. 341 2	1.027 2

表 4 质谱参数

Tab. 4 MS parameters

成分	离子化模式	母离子	子离子	裂解电	碰撞能
JJX 7J	商丁化俣八	m/z	m/z	压/V	量/V
腺苷	ESI +	268. 1	136.0	110	10
表告依春	ESI +	130.0	70. 1	55	8
咖啡酸	ESI -	179. 2	135.0	90	8
绿原酸	ESI -	353.0	190. 7	110	3
阿魏酸	ESI -	193.0	134. 0	95	9
紫堇灵	ESI +	368. 1	289. 0	135	24
乙酰紫堇灵	ESI +	410.0	350. 1	135	20
芹菜素	ESI -	269.0	117.0	130	26
黄芩素	ESI +	271.0	123.0	100	32
汉黄芩素	ESI +	285. 1	270.0	135	22

参考文献:

- [1] 国家药典委员会. 中华人民共和国药典: 2010 年版一部 [S]. 北京: 中国医药科技出版社, 2010.
- [2] Kim J K, Kim Y S, Kim Y, et al. Comparative analysis of flavonoids and polar metabolites from hairy roots of Scutellaria baicalensis and $Scutellaria\ lateriflora\ [\ J\]$. World J Micorbiol Biotechnol, 2014, 30(3): 887-892.
- [3] Du L Y, Guo J M, Qian D W, et al. Simultaneous determination of seven active ingredients in rat plasma by UPLC-MS/MS and application in pharmacokinetic studies after oral administration of scutellaria-coptis herb couple [J]. Med Chem Res, 2015, 24(3): 1289-1297.
- [4] Schütz K, Kammerer D R, Carle R, et al. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale Web. ex Wigg.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry [J].

Rapid Commun Mass Spectrom, 2005, 19(2): 179-186.

- [5] 李喜凤,郝 哲,邱天宝,等. 蒲公英中有机酸类成分的 提取工艺研究[J]. 中成药, 2011, 33(2): 262-265.
- [6] Xiao Y, Yang C J, Zhong M L, et al. Chemical constituent from Corydalis bungeana Turcz. [J]. Nat Prod Res Dev, 2013, 25(12): 1665-1668.
- [7] Xiao P, Huang H Z, Chen J W, et al. In vitro antioxidant and anti-inflammatory activities of Radix Isatidis extract and bioaccessibility of six bioactive compounds after simulated gastro-intestinal digestion[J]. J Ethnopharmacol, 2014, 157: 55-61.
- [8] 徐小飞,潘雪峰,张慧晔,等.一测多评法同时测定板蓝 根中 4 种核苷及 (R, S) -告依春 [J]. 中成药, 2014, 36 (7): 1445-1449.
- [9] 胡 冰. 高效液相色谱法测定蒲地蓝消炎片中腺苷的含量 [J]. 海峡药学, 2014, 26(6): 71-73.
- [10] 邵礼梅,王云龙,李延雪. 高效液相色谱法测定蒲地蓝消 炎片中黄芩苷与黄芩素含量[J]. 中国药业, 2012, 21 (4): 37-38.
- [11] 汤道权,张 超. HPLC 测定蒲地蓝胶囊中黄芩苷的含量 [J]. 中成药, 2007, 29(10): 1551-1553.
- [12] 刘德胜,吕青志,张晓帆,等. HPLC 法对不同蒲地蓝消 炎制剂中绿原酸和咖啡酸含量的测定[J]. 滨州医学院学 报, 2012, 35(1): 51-54.
- [13] 覃华亮, 韦 怡. HPLC 测定蒲地蓝消炎片中紫堇灵的含 量[J]. 中国现代中药, 2015, 17(1): 58-60.
- [14] 朱粉霞,董自波,舒 欣,等. UPLC 同时测定蒲地蓝消 炎口服液中 8 种成分的含量[J]. 中国药科大学学报, 2013, 44 (1): 61-64.
- 董自波,李 超,邵建国. HPLC 同时测定蒲地蓝消炎口 [15] 服液中7个成分的含量[J]. 中国中药杂志, 2015, 40 (9): 1747-1750.