HPLC-DAD 法同时测定右归丸中 6 种成分

邢 f^1 , 张 f^1 , 正 f^1 , 章建华², 尹 华^{1*}

(1. 浙江中医药大学药学院中药标准化研究实验室,浙江 杭州 310053; 2. 浙江中医药大学附属第一医院,浙江 杭州 310006)

摘要:目的 建立高效液相色谱-二极管阵列检测器(HPLC-DAD)法同时测定右归丸(熟地黄、附子、肉桂等)中 6 种成分的含有量。**方法** 分析采用 Waters X Bridge- C_{18} 色谱柱(4.6 mm×250 mm,5 μ m);流动相甲醇-1% 冰醋酸,梯度洗脱;柱温 30 ℃;体积流量 1.0 mL/min。结果 绿原酸、莫诺苷、松脂醇二葡萄糖苷、马钱苷、阿魏酸和肉桂酸均呈良好的线性关系($r \ge 0.999$),平均加样回收率(n = 6)为 99.7% ~102.2%(RSD < 3%)。结论 该方法简便快速,准确可靠,重复性好,可用于右归丸的质量控制。

 关键词: 右归丸;绿原酸;莫诺苷;松脂醇二葡萄糖苷;马钱苷;阿魏酸;肉桂酸;HPLC-DAD

 中图分类号: R927.2
 文献标志码: A
 文章编号: 1001-1528(2016)08-1736-05

doi:10.3969/j.issn.1001-1528.2016.08.016

Simultaneous determination of six constituents in Yougui Pills by HPLC-DAD

XING Jing¹, ZHANG Lin¹, WANG Xuan¹, ZHANG Jian-hua², YIN Hua^{1*}

(1. Traditional Chinese Medicine Standardization Laboratory in College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China;

2. The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310006, China)

ABSTRACT: AIM To establish a high-performance liquid chromatography with diode array detection (HPLC-DAD) method for simultaneously determining the contents of six constituents in Yougui Pills (an osteo joint ease containing *Rehmanniae Radix Praeparata*, *Aconiti Lateralis Radix Praeparata*, *Cinnamomi Cortex*, *etc.*). **METH-ODS** The analysis was performed on a 30 °C thermostatic Waters X Bridge- C_{18} column (4.6 mm × 250 mm, 5 μ m), with the mobile phase comprising of methanol-1% glacial acetic acid flowing at 1.0 mL/min. **RESULTS** Chlorogenic acid, morroniside, pinoresinol diglucoside, loganin, ferulic acid and cinnamic acid displayed good linear relationships ($r \ge 0.999$), whose average recoveries (n = 6) were 99.7% – 102.2% (RSD < 3%). **CONCLUSION** With good reproducibility, this simple and accurate method can be used for the rapid quality control of Yougui Pills.

KEY WORDS: Yougui Pills; chlorogenic acid; morroniside; pinoresinol diglucoside; loganin; ferulic acid; cinnamic acid; HPLC

右归丸最早载于《景岳全书》,常被作为"阴中求阳"的代表方,由熟地、附子、肉桂、鹿角胶、山药、山茱萸、菟丝子、枸杞子、当归、杜仲10味药材组成,具有温补肾阳、散寒通络之功,常用以骨关节炎、骨质疏松等"骨痹"疾病的临

床治疗和实验研究。临床研究表明,右归丸对肾阳虚型骨质疏松症有良好的疗效,可实现患者骨密度和骨强度的提升,还能抑制去卵巢致骨质疏松大鼠垂体 ACTH 细胞的增生和活性,改善皮质类固醇激素对骨代谢的副作用,促进骨形成,减少骨吸收,

收稿日期: 2015-12-06

基金项目: 2012 年国家自然科学基金项目 (81273772); 2016 年度浙江省新苗人才计划创新孵化项目 (2015R410014); 浙江省中药学 学科科研开放基金资助 (Yao2016005); 浙江省中医药科技计划项目 (2010ZA026)

作者简介: 邢 婧 (1992—), 女,硕士生,研究方向为中药质量控制及新药研发。Tel: 18368875192, E-mail: 18368875192@163.com *通信作者: 尹 华 (1965—),女,教授,博士生导师,研究方向为中药分析及质量评价、药效物质基础及中药新药开发。Tel: (0571) 86613604, E-mail: maryyinhua@163.com

达到治疗骨质疏松的目的[14]。

课题组前期研究发现,右归丸药液对骨质疏松有确切的治疗作用,但有关其多成分含有量测定尚未见报道。本实验采用高效液相色谱-二极管阵列检测器(HPLC-DAD)法,同时测定右归丸中绿原酸、莫诺苷、松脂醇二葡萄糖苷、马钱苷、阿魏酸和肉桂酸6种成分的含有量,可用于该药物的质量控制,为进一步相关机制研究和临床应用提供科学依据。

1 实验材料

1.1 仪器 Waters e2695-2998 高效液相色谱仪 (配置 e2695 二元梯度泵、2998 二极管阵列检测 器、自动进样器、Empower 色谱工作站、Waters X Bridge-C₁₈色谱柱 (4.6 mm × 250 mm, 5 μm) (美 国 Waters 公司); Sartorious BS110S 电子天平 (十 万分之一, 德国赛多利斯公司); YP302N 电子天 平(上海箐海仪器有限公司); PHS-3TC 精密数显 酸度计(上海天达仪器有限公司); Centrifuge 5804R 冷冻离心机 (德国 Eppendorf 公司); KQ5200B 超声清洗器(昆山市超声仪器有限公司) 试药与试剂 熟地(产地河南,批号 141123)、附子(产地四川,批号131214)、肉桂 (产地广西, 批号 131226)、鹿角胶(产地河南, 批号120103)、山药(产地浙江,批号141223)、 山茱萸(产地浙江,批号131115)、菟丝子(产地 辽宁, 批号 141204)、枸杞子(产地宁夏, 批号 141229)、当归(产地甘肃,批号131227)、杜仲 (产地浙江,批号150108)饮片(华东医药股份有 限公司参茸分公司),经浙江中医药大学药学院中 药鉴定教研室张如松教授鉴定为正品,符合 2010 年版《中国药典》(一部)项下规定。绿原酸、松 脂醇二葡萄糖苷、马钱苷、阿魏酸和肉桂酸对照品 (中国食品药品检定研究院,批号分别为0753-200111 111537-200501 111640-201005 0773-9910、0786-9802); 莫诺苷对照品(北京科量技术 有限公司,含有量>98%,批号141022)。甲醇为 色谱纯 (美国 Merck 公司); 冰醋酸为优级纯; 水 为娃哈哈纯净水;其余试剂均为分析纯。

2 方法与结果

2.1 溶液的制备[1-7]

2.1.1 对照品溶液 精密称取绿原酸、莫诺苷、松脂醇二葡萄糖苷、马钱苷、阿魏酸和肉桂酸对照品适量,加甲醇分别配成1.149、0.809、1.818、0.550、2.852、4.182 mg/mL的对照品溶液。

- 2.1.2 右归丸药液 按熟地 40 g、附子 10 g、肉桂 10 g、鹿角胶 20 g、山药 20 g、山茱萸 15 g、菟丝子 20 g、枸杞 20 g、当归 15 g、盐杜仲 20 g 的处方比例称取各味饮片,加入 10 倍量 50% 乙醇,室温浸泡 1 h,45 ℃下超声(500 W、40 kHz)30 min,提取两次,合并药液,过滤,50 ℃减压浓缩,定容至 100 mL 量瓶,即 1.9 g 生药/mL,4 ℃冰箱保存。
- 2.1.3 供试品溶液 取右归丸溶液 2.0 mL, 甲醇稀释 5 倍至 0.38 mg/mL, 在 4 ℃、13 000 r/min 条件下高速离心 15 min, 吸取上清液,即得。
- 2.1.4 缺当归、枸杞、杜仲、菟丝子阴性对照溶液 按处方取缺当归、枸杞、杜仲和菟丝子的药材,按"2.1.3"项下方法制成缺当归、枸杞、杜仲和菟丝子阴性对照溶液。
- 2.1.5 缺肉桂阴性对照溶液 按处方取缺肉桂的药材,按"2.1.3"项下方法制成缺肉桂阴性对照溶液。
- 2.1.6 缺当归、枸杞阴性对照溶液 按处方取缺当归、枸杞的药材,按"2.1.3"项下方法制成缺当归、枸杞阴性对照溶液。
- 2.1.7 缺杜仲、山茱萸阴性对照溶液 按处方取 缺杜仲、山茱萸的药材,按"2.1.3"项下方法制 成缺杜仲、山茱萸阴性对照溶液。
- 2.1.8 山茱萸对照溶液 取山茱萸 15 g, 按 "2.1.3" 项下方法制成山茱萸对照溶液。
- 2.2 色谱条件及系统适应性试验 Waters X Bridge- C_{18} 色谱柱(4.6 mm×250 mm,5 μm);流动相甲醇(A)-1% 冰醋酸(B),梯度洗脱(程序见表1);柱温 30 ℃;体积流量 1.0 mL/min;进样量 10 μL;检测波长 326 nm(11~14 min,绿原酸)、240 nm(14~22 min,莫诺苷、松脂醇二葡萄糖苷和马钱苷)、326 nm(22~24 min,阿魏酸)、277 nm(24~37 min,肉桂酸)。各检测成分均达到基线分离(R>1.5),各成分理论塔板数均大于 2 000。

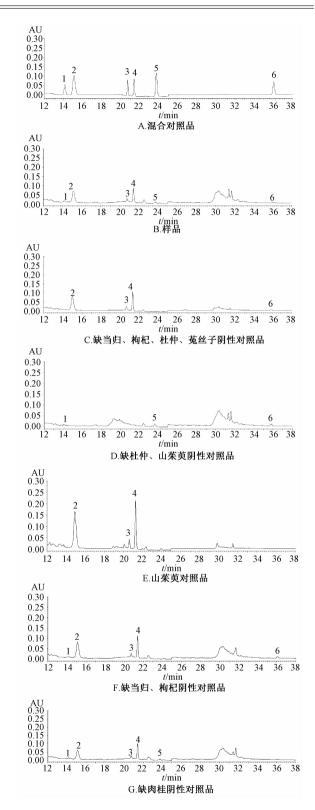
表 1 梯度洗脱程序 Tab. 1 Gradient elution programs

时间/min	A 甲醇/%	B 1% 冰醋酸/%
0	5	95
5	5	95
6	21	79
15	21	79
16	33	67
26	33	67
27	50	50
37	50	50

2.3 专属性试验 精密吸取混合对照品、供试品、 阴性对照品 10 μL, 在 "2.2" 项色谱条件下分析, 结果见图 1。由图可知,供试品在与绿原酸、莫诺 苷、松脂醇二葡萄糖苷、马钱苷、阿魏酸和肉桂酸 对照品相应的位置上,均有相同保留时间的色谱 峰,而各阴性对照溶液无色谱峰,不于扰测定。

2.4 线性关系考察 精密吸取各对照品贮备液适量,置于5 mL 棕色量瓶中,甲醇稀释至刻度,摇匀,得每1 mL 含绿原酸 55.2 μg、莫诺苷161.8 μg、松脂醇二葡萄糖苷290.9 μg、马钱苷82.5 μg、阿魏酸45.6 μg、肉桂酸16.7 μg 的混合对照品溶液。取 0.04、0.1、0.2、0.4、0.8、2.0 mL,置于2 mL 棕色量瓶中,甲醇稀释至刻度,摇匀,得系列混合对照品溶液,在"2.2"项色谱条件下进样测定。以各成分的进样量(X)对峰面积(Y)进行线性回归,结果见表2。

表 2 6 种成分的线性关系


Tab. 2 Linear relationships of six constituents

成分	回归方程	线性范围/ 相关系数
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	口妇为'庄	ng ng
绿原酸	$Y = 2.483 \times 10^3 X - 1.643 \times 10^4$	1. 000 0 11. 04 ~ 551. 5
莫诺苷	$Y = 2.068 \times 10^3 X - 4.180 \times 10^4$	0. 999 9 32. 36 ~ 1 618
松脂醇二葡	$Y = 0.333 \times 10^3 X - 7.295 \times 10^2$	0.000 1.50 16. 2.000
萄糖苷	$I = 0.333 \times 10^{\circ} A - 7.293 \times 10^{\circ}$	0. 999 1 38. 10 ~ 2 909
马钱苷	$Y = 2.156 \times 10^3 X - 1.903 \times 10^4$	0. 999 9 16. 50 ~ 825. 0
阿魏酸	$Y = 4.352 \times 10^3 X - 2.869 \times 10^4$	0. 999 9 9. 120 ~ 456. 3
肉桂酸	$Y = 1.570 \times 10^4 X - 3.446 \times 10^4$	1. 000 0 3. 344 ~ 167. 3

2.5 精密度试验 精密吸取同一混合对照品溶液,在 "2.2" 项色谱条件下连续进样 6 次,测得各成分峰 面 积 RSD 分 别 为 2.6%、0.6%、2.9%、0.68%、0.46%、0.80%,表明仪器精密度良好。2.6 稳定性试验 精密吸取供试品溶液 $10~\mu L$,在 "2.2" 项色谱条件下,于 0、2、4、6、8、16、24 h 进样测定,测得各成分峰面积 RSD 分别为 2.6%、2.6%、2.9%、1.0%、1.8%、2.4%,表明供试品溶液在 24 h 内稳定性良好。

2.7 重复性试验 取同一批右归丸 6 份,按 "2.1.3"项下方法制备供试品溶液,在 "2.2"项色谱条件下进样测定,测得各成分含有量 RSD 分别 为 2.5%、2.6%、2.9%、1.5%、2.0%、2.6%,表明该方法重复性良好。

2.8 加样回收率试验 精密吸取含有量已知的右归丸 6 份,分别精密加入 1.149 mg/mL 绿原酸对照品溶液 8.5 μ L、0.809 mg/mL 莫诺苷对照品溶液 81.5 μ L、1.818 mg/mL 松脂醇二葡萄糖苷对照

- 1. 绿原酸 2. 莫诺苷 3. 松脂醇二葡萄糖苷 4. 马钱苷
- 5. 阿魏酸 6. 肉桂酸
- 1. chlorogenic acid 2. morroniside 3. pinoresinol diglucoside
- 4. loganin 5. ferulic acid 6. cinnamic acid

图 1 HPLC 色谱图 Fig. 1 HPLC chromatograms

品溶液 71.5 μ L、0.550 mg/mL 马钱苷对照品溶液 80.0 μ L、0.285 2 mg/mL 阿魏酸对照品(稀释 10 倍)溶液 10.0 μ L、0.041 82 mg/mL 肉桂酸对照品(稀释 100 倍)溶液 24.0 μ L,50% 乙醇定容至 1 mL量瓶中。精密吸取 1 mL,置于 1.5 mL 离心管中,13 000 r/min 离心 15 min,取上清液,在"2.2" 项色谱条件下进样 10 μ L 测定,结果见表 3。

表 3 加样回收率试验结果 (n=6) Tab. 3 Results of recovery tests (n=6)

	Tab. 3	Nesuits (n recove	i y icsis	(n-0)	
7.45	原有量/	加入量/	测得量/	回收率/	平均回收	RSD/
成分	μg	μg	μg	%	率/%	%
绿原酸	10. 20	9.800	20. 10	101.42	100. 3	2.8
	9.700	9.800	19.80	103.01		
	10. 20	9.800	20. 30	103.00		
	9.700	9.800	19. 10	95.74		
	10.00	9.800	19.70	98.65		
	10. 10	9.800	19. 90	100.08		
莫诺苷	67. 20	66.00	135.0	102.74	99. 1	2.7
	62. 50	66.00	126. 9	97. 55		
	67.00	66.00	133.8	101. 25		
	65.70	66.00	129. 1	96.06		
	65.80	66.00	129.8	96.96		
	66. 20	66.00	132. 2	99. 96		
松脂醇二	131. 2	130.0	264. 5	102. 55	102. 2	1.9
葡萄糖苷	130. 5	130.0	261.5	100. 79		
	129. 5	130.0	261. 2	101. 34		
	129. 9	130.0	259.8	99. 91		
	121. 2	130.0	257. 4	104.77		
	130. 3	130.0	265.6	104. 08		
马钱苷	43.90	44.00	90. 10	104. 95	101.3	2.6
	43. 30	44.00	86.00	97.07		
	44. 60	44.00	88. 70	100. 19		
	44. 10	44.00	88. 50	100.69		
	43. 10	44.00	88. 30	102.69		
	44. 70	44.00	89. 60	101.98		
阿魏酸	3.000	2. 900	6.000	104.00	102. 2	1.9
	2.800	2. 900	5.800	104. 76		
	2.900	2. 900	5.900	101.74		
	3.000	2. 900	5.900	99. 37		
	3.000	2. 900	5.900	101. 18		
	2.900	2. 900	5.900	101. 94		
肉桂酸	1.000	1.000	2.000	102. 41	99. 7	2.7
	1.000	1.000	2.000	99. 64		
	1.000	1.000	2.000	99. 01		
	1.000	1.000	2.000	98.47		
	1.000	1.000	2.000	95.65		
	1. 100	1.000	2. 100	102. 89		

2.9 样品含有量测定 取右归丸 3 份,按 "2.1.2"项下方法制备供试品溶液,精密吸取供 试品、混合对照品溶液,在"2.2"项色谱条件下 进样测定,结果见表4。

3 讨论

3. 1 质量评价指标的确定 《中国药典》2010 版[1]中,右归丸以山茱萸中的马钱苷为含有量测 定指标。方中附子、肉桂、鹿角胶为君药,温补肾 阳,填精补髓;臣以熟地黄、枸杞子、山茱萸、山 药,滋阴益肾,养肝补脾;佐以菟丝子补阳益阴、 固精缩尿, 杜仲补益肝肾、强筋壮骨, 当归养血和 血,诸药配合,共奏温补肾阳,填精止遗之效。君 药附子具有回阳救逆、温肾助阳、散寒止痛之功 效,其主要活性成分为乌头类生物碱,即乌头碱、 次乌头碱、新乌头碱、苯甲酰乌头原碱、苯甲酰次 乌头原碱、苯甲酰新乌头原碱,但含有量很低,无 法检测; 君药肉桂具有补火助阳、引火归元、散寒 止痛温经通脉之功效,主要成分为肉桂酸;臣药山 茱萸滋阴益肾, 养肝补脾, 其主要药效成分为莫诺 苷、马钱苷、松脂醇二葡萄糖苷; 臣药枸杞子, 其 主要成分为绿原酸、阿魏酸; 佐药杜仲具有补肝 肾、强筋骨之功效,其主要成分为松脂醇二葡萄糖 苷、绿原酸, 菟丝子补阳益阴, 固精缩尿, 绿原酸 为其主要药效成分, 当归养血和血, 以绿原酸、阿 魏酸为功效成分[2-10]。前期药理研究表明,绿原 酸、莫诺苷、松脂醇二葡萄糖苷、马钱苷、阿魏 酸、肉桂酸均能入血,可能是右归丸直接作用于体 内的物质, 故以这6种化学成分为质量评价指标。 3.2 检测波长的选择 建立了 HPLC 多波长切换 梯度洗脱法[11-16] 同时测定右归丸中6种成分含有 量,其出峰顺序依次为绿原酸、莫诺苷、松脂醇二 葡萄糖苷、马钱苷、阿魏酸和肉桂酸, 分别设置检 测波长为 326、240、240、240、326、277 nm, 可 保证各成分均有较大吸收,而且检测灵敏度高、干 扰小。

3.3 色谱柱和流动相的选择 分别比较了 Waters XBridgeTM C_{18} 色谱柱(4.6 mm×250 mm,5 μ m)和 Waters SunFireTM C_{18} 色谱柱(4.6 mm×250 mm,5 μ m),发现前者分离效果更佳。再对流动相中的水相(5 mmol/L 乙酸铵 + 0.5% 冰醋酸水溶液、5 mmol/L乙酸铵 + 1% 冰醋酸水溶液、0.5% 冰醋酸水溶液、1% 冰醋酸水溶液)和有机相(甲醇、乙腈)进行了考察,发现甲醇-1% 冰醋酸水溶液分离效果良好,峰形较佳,故选择其作为流动相。

3.4 提取方法的考察 50% 乙醇可以把水溶性和脂溶性成分得到较好地呈现;室温浸泡 1 h 是为了浸提出药物的有效部位;45 ℃下超声 30 min 可减少热不稳定成分的损失,而且超声比加热回流更节

表 4 含有量测定结果 (mg/mL, n=3)

Tab. 4 Results of content determination (mg/mL, n = 3)

批号	绿原酸	莫诺苷	松脂醇二葡萄糖苷	马钱苷	阿魏酸	肉桂酸
20150625	0. 102 2	0. 671 5	1. 304 6	0. 439 2	0.068 5	0.010 1
20150626	0. 100 9	0.6702	1. 294 6	0. 432 6	0.068 3	0.0101
20150627	0. 102 2	0.6617	1. 298 9	0. 431 1	0.068 5	0.0105
平均值	0. 101 8	0.6678	1. 299 4	0. 434 3	0.068 4	0.0102

能: 提取、合并两次后, 所含药液含有量较高, 减 压浓缩可确保药液一致性, 并使其更加稳定, 延长 存储时间。

3.5 新发现 查阅文献可知,右归丸的10味药材 饮片中仅杜仲含有松脂醇二葡萄糖苷, 但缺杜仲阴 性对照溶液中仍然有该成分色谱峰。各单味药经提 取后进样分析, 发现山茱萸药液在该成分出峰的保 留时间处也有相应色谱峰,而且是在甲醇-1%冰酷 酸水溶液流动相中呈现出的,推测山茱萸可能含有 松脂醇二葡萄苷,具体有待作进一步研究。

参考文献:

- [1] 国家药典委员会. 中华人民共和国药典: 2010 年版一部 [S]. 北京: 中国医药科技出版社, 2010: 633-634.
- 邢 婧,任 红,汪 轩,等. HPLC 法同时测定淫羊藿-[2] 川芎药对8种化学成分的含量[J]. 药物分析杂志, 2015, 35(6): 960-964.
- [3] 彭亚勇, 戴治波, 谭花云. 右归丸加减治疗骨质疏松症的 临床疗效观察[J]. 大家健康, 2014, 8(4): 37-38.
- 孔 强, 吕文海. 13 批不同产地杜仲药材质量检测分析 [4] [J]. 中成药, 2010, 32(5): 803-805.
- [5] 吕志阳, 狄留庆, 赵晓莉. 盐杜仲饮片质量标准研究[J]. 中药材, 2010, 33(1): 31-33.
- [6] 周 清,侯 峰,董 斌,等. 用超高速液相色谱法同时 测定山茱萸药材中马钱苷和莫诺苷的含量[J]. 药学服务 与研究, 2012, 12(6): 441-442.
- [7] 喻喜华, 毕开顺, 李泽运, 等. UPLC 法同时测定山茱萸

- 生品与酒制品中 5 个组分的含量[J]. 药物分析杂志, 2011. 31(8): 1463-1465.
- [8] 刘湘丹, 黄 攀, 袁林祥, 等. HPLC 法同时测定补肾通 络方中马钱苷、阿魏酸和二苯乙烯苷的含量[J]. 中国药 房, 2014, 25(47): 4455-4456.
- [9] 韩 强,陈 辉,李银洁,等. HPLC 法同时测定银黄制 剂中9个成分的含量[J]. 药物分析杂志, 2013, 33(10): 1686-1688.
- [10] 潘春燕,陈 静,杭太俊,等. HPLC 法同时测定芦根中 对香豆酸和阿魏酸含量[J]. 中国药科大学学报, 2015, 46(2): 219-220.
- [11] 邓少伟,程显隆,马双成,等. 安中片的质量控制标准研 究[J]. 药物分析杂志, 2006, 26(8): 1065-1067.
- 尹 华, 王知青, 王 玲, 等. HPLC-DAD 波长切换法同 [12] 时测定白术中白术内酯 I、Ⅱ、Ⅲ和苍术酮的含量[J]. 中华中医药杂志, 2013, 28(1): 233-235.
- 姜 鸿, 王光函, 张 颖, 等. HPLC 法测定火绒草中原 [13] 儿茶酸、原儿茶醛、绿原酸和咖啡酸[J]. 中成药, 2011, 33(11): 2023-2025.
- [14] 陈晓鹏, 鄂秀辉, 夏忠庭, 等. HPLC 法同时测定养血清 脑颗粒中7个主要成分[J]. 中成药, 2013, 35(9): 1921-1924.
- 林丽美, 夏伯候, 刘菊妍, 等. RP-HPLC 法同时测定夏桑 [15] 菊颗粒中绿原酸、异迷迭香酸苷、迷迭香酸和蒙花苷[J]. 中成药, 2013, 35(11): 2411-2415.
- [16] 张苏阳,陈佳正,李晓英,等.藏药八味秦皮丸中秦皮甲 素、秦皮乙素和麝香酮的定量测定[J]. 中成药, 2011, 33 (6): 984-988.