液中三者转移率(转移率 = 吸附率×解吸率)分别为83.17%、92.86%、94.65%。同时,总黄酮含有量达53.95%,符合中药有效部位作为原料药的要求,而且女贞苷和野漆树苷的含有量分别为13.74%和4.07%,可为进一步开发中药新药提供依据。

另外,本实验在大孔树脂动态吸附阶段的考察是以吸附率为考察指标,可避免解吸阶段产生的误差对其的影响;在动态解吸阶段中,则以解吸率为考察指标,可排除吸附阶段的误差对其的影响,与仅以转移率为指标考察所有纯化因素相比,该方法更加准确、简便、可靠[12-14]。

参考文献:

- [1] 孙敬勇, 刘秀荣, 武海艳, 等. 山香圆化学成分及药理活性的研究进展[J]. 食品与药品, 2011, 13(11); 441-444.
- [2] 张 磊,李 俊,余世春,等. 山香圆总黄酮的抗炎作用 [J]. 安徽医科大学学报,2003,38(3):185-188.
- [3] 詹怡飞,张建军,毛友昌,等. 山香圆含片抗菌作用的试验研究[J]. 江西中医学院学报,2005,17(2):55.
- [4] 张 磊,李 俊,余世春,等. 山香圆总黄酮体外对大鼠佐 剂性关节炎免疫功能的影响[J]. 中国药理学通报,2007,

23(1): 106-110.

- [5] 吴 珊, 李小芳, 罗 佳, 等. 大孔树脂纯化山香圆叶中的 总黄酮[J]. 华西药学杂志, 2014, 29(6): 680-682.
- [6] 国家药典委员会. 中华人民共和国药典: 2015 年版一部 [S]. 北京: 中国医药科技出版社, 2015: 29.
- [7] 孙启文,吴 松,方 芸. D101 大孔树脂纯化雪荔组方总 黄酮工艺[J]. 中成药, 2014, 36(10); 2208-2211.
- [8] 王 敏,陈文龙,王志仁,等. HP-20型大孔吸附树脂对土 茯苓总黄酮的富集纯化作用[J]. 中成药,2015,37(9):2074-2078.
- [9] 田彦芳,万海同,朱紫烨,等.基于熵权法的多目标筛选甘草黄酮类成分纯化工艺[J].中草药,2016,47(7):1118-1125.
- [10] 章光文,周国平,杨香菊,等. HPLC 法同时测定山香圆片中女贞苷和野漆树苷的含量[J]. 药物分析杂志,2009,29(6):912-914.
- [11] 朱学鑫,蒋瑞彬,黄晶晶,等.大孔吸附树脂法富集山核桃叶球松素查尔酮工艺的研究[J].中华中医药学刊,2016,34(2):304-306.
- [12] 豆浩然,倪 健,葛 亮,等. 大孔树脂纯化展毛地椒总黄酮工艺研究[J]. 辽宁中医杂志, 2015, 42(9): 1726-1729.
- [13] 罗娅君, 边清泉, 罗 英, 等. 大孔树脂吸附马比木中喜树碱的工艺[J]. 中成药, 2015, 37(8): 1859-1862.
- [14] 孙政华,郭 玫,邵 晶,等. 大孔吸附树脂纯化富集五脉 绿绒蒿总生物碱[J]. 中成药, 2016, 38(1): 77-83.

疏风定喘颗粒辅料的筛选

李 璐, 王秀海, 王永香, 孙文杰, 吴 云, 丁 岗, 毕宇安, 王振中(江苏康缘药业股份有限公司,中药制药过程新技术国家重点实验室,江苏 连云港 222001)

摘要:目的 筛选疏风定喘颗粒 (炙麻黄、黄芩、前胡等)的辅料。方法 分别以糊精、乳糖、微晶纤维素、甘露醇、山梨醇为辅料进行制粒,混料设计进行优化;以成型性、吸湿性、溶化性、流动性、颗粒性状为指标,评价不同辅料所制颗粒的性状,响应面法进行优化;以颗粒成型率和溶化率为指标,单因素试验优化辅料用量。结果 以糊精为辅料制粒时效果最佳,根据干膏得率及服药量,其适宜用量为20%~30%。结论 糊精是制备疏风定喘颗粒的理想辅料。

关键词: 疏风定喘颗粒; 辅料; 混料设计; 响应面法; 单因素试验

中图分类号: R944 文献标志码: A 文章编号: 1001-1528(2017)04-0731-06

doi:10.3969/j.issn.1001-1528.2017.04.014

Optimization of excipients for Shufeng Dingchuan Granules

LI Lu, WANG Xiu-hai, WANG Yong-xiang, SUN Wen-jie, WU Yun, DING Gang, BI Yu-an, WANG Zhen-zhong

收稿日期: 2016-07-04

基金项目: 国家"重大新药创制"科技重大专项(2015ZX09101043-003)

作者简介: 李 璐, 女, 硕士, 从事中药新药研发。Tel: (0518) 81152337, E-mail: lulu-xina@163.com

(State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China)

KEY WORDS: Shufeng Dingchuan Granules; excipients; mixture design; response surface method; single factor test

疏风定喘颗粒来源于临床协定处方, 由炙麻 黄、苦杏仁等 12 味药组成,是在明代经典名方 "定喘汤"的基础上化裁加减而来, 经10余年临 床应用证实, 其对支气管哮喘急性发作期具有确切 的临床疗效。课题组前期已完成了对疏风定喘颗粒 提取、浓缩、干燥工艺的研究^[1],本实验通过 Design Expert 8.0.6 软件对其辅料进行筛选和优化, 为该制剂成型工艺的确定奠定基础。

仪器与试剂

IW2-150 型电子天平 「赛多利斯科学仪器(北 京)有限公司]; YK 系列摇摆颗粒剂(江苏瑰宝 集团有限公司): GFG-60 型沸腾干燥机 (重庆英 格制药机械有限公司)。糊精(广饶丽枫生物科技 有限公司, 批号 2015072501); 微晶纤维素 (曲阜 天利药用辅料有限公司,批号140620);乳糖(江 苏道宁药业有限公司,批号140904);山梨醇(石 家庄瑞雪制药有限公司,批号120151);甘露醇 (南京化学制药有限公司,批号000811)。疏风定 喘颗粒干膏粉(康缘药业 GMP 中试车间制备,批 号 20151101)。

2 方法与结果

2.1 剂型选择 该制剂来源于临床经验方,处方 组成药味较多,考虑到患者煎煮服用口感差,而且 周期较长,故需要制成便于携带和服用的固体剂 型[2]。根据临床用药需求、方中各药物性质、服 药剂量及预实验收膏率结果, 本实验对处方进行深 入分析,最终考虑制成颗粒剂[2]。

初步制粒结果发现, 该物料在干燥情况下的吸 湿性较强,而且无太大黏性,不适合干法制粒;湿 法制粒时,物料遇水后黏性较大,为避免患者服药 量较大, 拟选择 95% 乙醇制粒, 并加入一定量辅 料,制粒后进行快速沸腾干燥[3],以避免减压干 燥或鼓风干燥方式导致物料在托盘上黏结, 使得制 粒失败。

2.2 制剂辅料选择 本实验选取制粒常用的糊精、 乳糖、甘露醇、山梨醇,以及易于颗粒成型的微晶 纤维素作为辅料^[4], 通过 Design Expert 8.0.6 软件 进行混料设计,通过考察颗粒的成型性、吸湿性、 溶化性、流动性以及颗粒性状, 筛选较优的制粒 辅料。

2. 2. 1 混料设计 根据混料设计中的 simplex lattice 方法, 固定药辅比为2:1, 以综合评分为评价 指标,对各种辅料单一或混合配方进行优化,结果 见表1。

表 1 混料设计结果

Tab. 1 Results of mixture design

试验号			辅料		
风驰与	糊精	乳糖	甘露醇	微晶纤维素	山梨醇
1	0.000	0.000	0.000	0.000	1.000
2	0.500	0.500	0.000	0.000	0.000
3	1.000	0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	1.000
5	0.600	0.100	0.100	0. 100	0.100
6	0.000	1.000	0.000	0.000	0.000
7	0.000	0.500	0.500	0.000	0.000
8	0.100	0.100	0.100	0.600	0.100
9	0.000	0.000	0.000	1.000	0.000
10	0. 100	0. 100	0.100	0. 100	0.600
11	0.500	0.000	0.000	0.000	0.500
12	0.000	1.000	0.000	0.000	0.000
13	0.000	0.000	1.000	0.000	0.000
14	0.000	0.000	0.000	0. 500	0.500
15	0.000	0.000	1.000	0.000	0.000
16	0.000	0.000	0.000	1.000	0.000
17	0.500	0.000	0.000	0. 500	0.000
18	0. 100	0. 100	0.600	0. 100	0.100
19	0. 200	0. 200	0.200	0. 200	0. 200
20	1.000	0.000	0.000	0.000	0.000
21	0.000	0.000	0.500	0. 500	0.000
22	0. 100	0.600	0.100	0. 100	0.100
23	0.000	0.500	0.000	0. 500	0.000
24	0.000	0.000	0.500	0.000	0.500
25	0.000	0.500	0.000	0.000	0.500
26	0.500	0.000	0.500	0.000	0.000

根据表1结果,取疏风定喘颗粒干膏粉1.0 kg, 加入0.5 kg 单一或混合辅料,混合均匀,再加入 250 mL 95% 乙醇,制成软硬适度的软材,采用摇摆 制粒机过20目筛制粒,沸腾干燥机60℃下干燥, 即得。

2.2.2 指标测定

2.2.2.1 成型性 将制备好的颗粒称定质量,先 过1号筛,再过5号筛,收集能通过1号筛但不能 通过5号筛的颗粒,称定质量,计算成型率,公式 为成型率 = (过筛后颗粒质量/过筛前颗粒质 量) ×100%。

2.2.2.2 流动性^[5] 采用固定漏斗法,将 3 只漏斗串联并固定于水平放置的坐标纸上 1 cm 高度处,小心将颗粒沿漏斗壁倒入最上方漏斗中,直到坐标纸上形成的颗粒圆锥体尖端接触到漏斗口为止,由坐标纸测出圆锥底部的半径 R,计算休止角 α ,公式为 $tg\alpha = H/R$ 。平行 3 次,取平均值。

2.2.2.3 溶化性^[6] 精密称取颗粒约5g,置于250 mL锥形瓶中,精密加入100 mL水,搅拌振荡5 min,3000 r/min 离心15 min,精密量取上清液10 mL,置已恒重的蒸发皿中,水浴蒸干,残渣在80℃烘干至恒重,精密称定质量,计算溶化率,公式为溶化率=(溶化颗粒质量/颗粒质量)×100%。

2.2.2.4 吸湿性^[6-7] 取适量颗粒,置于 30 ℃烘箱中恒重 48 h,将底部放有 NaCl 饱和溶液的玻璃干燥器中定时加入 NaCl 直至形成过饱和溶液,此时干燥器相对湿度 75%。在已恒重的扁形称量瓶底部放入厚约 2 mm、恒重 48 h 的颗粒,精密称定质量后置于上述干燥器内(称量瓶打开),48 h后称定质量,计算吸湿率,公式为吸湿率 = [(吸湿后质量 - 吸湿前质量)/吸湿前质量]×100%。2.2.2.5 颗粒性状^[8] 观察颗粒的粒度、均匀度、硬度、是否结块、颜色是否均匀,以大小均匀、硬度适中、无结块现象、颜色均一为最优(100 分),根据观察结果对不同辅料制备的颗粒进行评分,见表 2。

表 2 颗粒性状评分

Tab. 2 Scores for granule characters

1 ab. 2 Scores for granule characters						
试验号	均匀度	硬度	结块	颜色	评分	
1	粗颗粒较多	大	严重	深棕色与白色相间颗粒	60	
2	均匀	适中	无	深棕色,但有花斑现象	80	
3	均匀	适中	无	深棕色	100	
4	粗颗粒较多	大	严重	深棕色与白色相间颗粒	60	
5	均匀	适中	无	深棕色与白色相间颗粒	80	
6	均匀	适中	轻微结块	深棕色,但有花斑现象	70	
7	均匀	适中	无	深棕色,但有花斑现象	80	
8	均匀	适中	无	深棕色与白色相间颗粒	80	
9	均匀	大	轻微结块	深棕色	80	
10	均匀	适中	轻微结块	深棕色与白色相间颗粒	70	
11	均匀	适中	无	深棕色与白色相间颗粒	80	
12	均匀	适中	轻微结块	深棕色,但有花斑现象	70	
13	细颗粒较多	适中	较少	深棕色	80	
14	均匀	大	轻微结块	深棕色与白色相间颗粒	70	
15	细颗粒较多	适中	较少	深棕色	80	
16	均匀	大	轻微结块	均匀	80	
17	均匀	适中	轻微结块	深棕色	80	
18	均匀	适中	无	深棕色与白色相间颗粒	80	
19	均匀	适中	无	深棕色与白色相间颗粒	80	
20	均匀	适中	无	深棕色	100	
21	均匀	适中	轻微结块	深棕色	80	
22	均匀	适中	无	深棕色,但有花斑现象	80	
23	均匀	适中	无	深棕色,但有花斑现象	80	
24	均匀	大	轻微结块	深棕色与白色相间颗粒	70	
25	粗颗粒较多	适中	严重结块	深棕色与白色相间颗粒	70	
26	细颗粒较多	适中	无	深棕色	80	

2.2.2.6 综合评分 对不同考察指标进行权重分析, 计算综合评分, 公式为综合评分 = 成型率 × 15/最大成型率 + 溶化率 × 20/最大溶化率 + 性状评分值 × 15/最大评分值 + 最小休止角 × 15/休止角 + 最小吸湿率 × 35/吸湿率, 结果见表 3。

2.2.3 模型拟合 以糊精 (A)、乳糖 (B)、甘

露醇 (C)、微晶纤维素 (D)、山梨醇 (E) 为自变量,综合评分 (Y) 为因变量,进行多元线性回归和二项式分析,发现多元线性回归方程 P < 0.001,但 $R^2 = 0.764$ 6,表明拟合度不理想,预测性也较差,故不选择其进行拟合;二项式拟合方程为 Y = 92.63A + 89.10B + 90.37C + 83.94D +

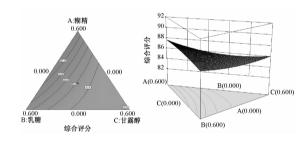
Tab. 3 Comprehensive scores for various indices

试验号 成型率/ % 溶化率/ % 性状 (°) 休止角/ 吸湿率/ % 综合评价 1 68.02 85.98 60 20.44 9.33 91.83 2 76.72 80.48 80 21.83 10.08 91.63 3 79.55 75.44 100 21.04 10.68 92.70 4 67.49 85.04 60 20.88 9.38 91.00	7
2 76. 72 80. 48 80 21. 83 10. 08 91. 63 3 79. 55 75. 44 100 21. 04 10. 68 92. 70 4 67. 49 85. 04 60 20. 88 9. 38 91. 00	,
3 79.55 75.44 100 21.04 10.68 92.70 4 67.49 85.04 60 20.88 9.38 91.00	
4 67.49 85.04 60 20.88 9.38 91.00	
5 77. 01 77. 68 80 23. 20 10. 15 89. 98	
6 73. 17 82. 42 70 24. 45 9. 86 89. 13	
7 69. 05 80. 78 80 26. 02 9. 94 88. 45	
8 70. 01 65. 73 80 23. 99 10. 64 83. 96	
9 73. 88 61. 26 80 23. 18 10. 61 84. 19	
10 69. 25 80. 75 70 22. 89 9. 94 88. 59	
11 72. 26 78. 56 80 21. 87 10. 06 90. 38	
12 73. 07 82. 35 70 24. 38 9. 85 89. 16	
13 69. 07 85. 65 80 26. 38 9. 55 90. 76	
14 70. 25 64. 32 70 22. 82 10. 43 83. 45	
15 68. 90 84. 86 80 26. 52 9. 65 90. 13	
16 73. 61 60. 65 80 23. 29 10. 71 83. 64	
17 74. 28 63. 34 80 23. 15 10. 67 84. 59	
18 69. 23 78. 29 80 25. 53 10. 43 86. 58	
19 70. 22 72. 09 80 25. 02 10. 39 85. 69	
20 78. 55 75. 52 100 21. 32 10. 67 92. 36	
21 70. 11 68. 16 80 25. 94 10. 40 84. 29	
22 70. 23 78. 00 80 24. 36 10. 32 87. 62	
23 73. 17 69. 02 80 24. 25 10. 62 85. 24	
24 68. 32 85. 67 70 24. 69 9. 53 88. 49	
25 70. 58 84. 21 70 22. 48 9. 63 89. 45	
26 73. 11 79. 56 80 24. 53 10. 32 88. 43	

91. 47E + 3. 51AB - 12. 03AC - 13. 75AD - 5. 44AE - 6. 04BC - 5. 24BD - 3. 25BE - 11. 79CD - 9. 84CE - 16. 35DE (R² = 0. 983 1), 方差分析见表 4。

表 4 方差分析 (I)

Tab. 4 Analysis of variance (I)


来源	离均差平方和	$d_{ m f}$	均方	F 值	P 值
模型	212. 26	14	15. 16	45. 68	< 0.000 1
线性混合	165. 09	4	41. 27	124. 35	< 0.000 1
AB	0. 67	1	0.67	2.01	0. 183 7
AC	7. 85	1	7. 85	23. 64	0.000 5
AD	10. 25	1	10. 25	30. 87	0.0002
AE	1.60	1	1.60	4. 83	0.0502
BC	1. 98	1	1.98	5.96	0.0327
BD	1.49	1	1.49	4. 49	0.057 8
BE	0. 57	1	0.57	1.72	0. 216 0
CD	7. 53	1	7. 53	22. 68	0.0006
CE	5. 24	1	5. 24	15. 79	0.0022
DE	14. 49	1	14. 49	43. 65	< 0.000 1
残差	3. 65	11	0.33	_	_
失拟项	2. 90	6	0.48	3. 21	0.1107
纯误差	0.75	5	0. 15	_	_
总离差	215. 91	25	_	_	_

由表可知,模型 P < 0.0001,非常显著;AC、AD、BC、CD、CE、DE 都比较显著 (P < 0.05);失拟项 P > 0.05,表明误差干扰小。再进行进一步方差分析,结果见表 5,可知 R^2 为 0.983 1,调整 R^2 与预测 R^2 较为接近,表明模型拟合度良好;信噪比 20.715,大于 4,表明噪音对信号的影响较小。

表 5 方差分析 (II) Tab. 5 Analysis of variance (II)

参数	数值
残差均方根	0. 58
均值	88. 14
变异系数	0. 65
预测残差平方和	38. 72
R^2	0. 983 1
调整 R^2	0.9616
预测 R ²	0.8206
信噪比	20. 715

2.2.4 响应面法优化 固定其中 2 个变量为 0.2, 绘制其余 3 个变量交互作用的等高线图和曲面图, 见图 1~3。

注: 左图为等高线图, 右图为响应面图, 图 2~3 同

图 1 糊精、乳糖、甘露醇对综合评分的影响

Fig. 1 Effects of dextrin, lactose and mannitol on comprehensive score

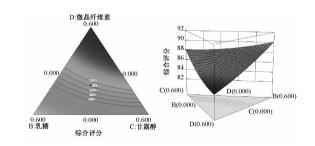


图 2 微晶纤维素、乳糖、甘露醇对综合评分的影响

Fig. 2 Effects of microcrystalline cellulose, lactose and mannitol on comprehensive score

由图1可知,固定微晶纤维素和和山梨醇时, 随着糊精比例提高,综合评分增加,表明糊精对制

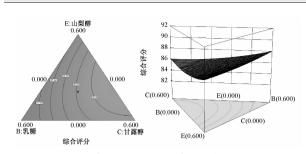


图 3 山梨醇、乳糖、甘露醇对综合评分的影响 Fig. 3 Effects of sorbitol, lactose and mannitol on comprehensive score

剂成型的影响较大,乳糖次之;由图2可知,固定 糊精和山梨醇时,随着乳糖比例提高,综合评分增加,表明乳糖对制剂成型的影响较大;由图3可知,固定糊精和微晶纤维素时,随着乳糖比例提高,综合评分增加,进一步证明乳糖对制剂成型的影响较大。

综合以上分析,结合 Design Expert 8.0.6 软件进行优化,结果见表6。由表可知,第一个方案最优,并且糊精价廉易得,故最终选择其作为辅料。

表 6 Design Expert 8.0.6 软件优化结果

Tab. 6 Optimization results obtained by Design Expert 8. 0. 6 software

方案	糊精	乳糖	甘露醇	微晶纤维素	山梨醇	综合评分	预期可信度
1	1.000	0.000	0.000	0.000	0.000	92. 626 1	0. 992
2	0.500	0.500	0.000	0.000	0.000	91. 733 9	0. 896
3	0.000	0.000	0.000	0.000	1.000	91.466 0	0. 867
4	0.000	0.000	1.000	0.000	0.000	90. 373 7	0. 749
5	0.000	1.000	0.000	0.000	0.000	89. 098 1	0. 611

2.2.5 验证试验 以糊精为辅料,对制剂成型工艺进行验证试验。称取干膏粉 1.0 kg,加入 0.5 kg 糊精,混合均匀,加入 95% 乙醇 250 mL 制软材,制粒,干燥,即得。对其进行成型性、吸湿性、溶

化性、流动性测定,以及性状观察,计算综合评分,结果见表7。由表可知,平均综合评分92.46与预测值92.6261相当,表明模型预测性良好,制剂成型工艺稳定、可重复。

表7 验证试验结果(I)

Tab. 7 Results of verification tests (I)

试验号	成型率/%	性状	休止角/(°)	溶化率/%	吸湿率/%	综合评分
1	78. 40	100	21. 40	75. 45	10. 65	92. 32
2	79. 26	100	21.06	75. 38	10. 68	92. 61
3	78. 49	100	21. 24	75. 33	10. 64	92. 45

- 2.3 辅料比例优化 在确定辅料为糊精的基础上, 以颗粒的成型性和溶化性为指标,对 10%、20%、 30%、40% 糊精进行单因素试验,确定其最优 比例。
- 2.3.1 方法 称取干膏粉 4.5、4.0、3.5、3.0 kg,加入 0.5、1.0、1.5、2.0 kg 糊精 (分别相当于 10%、20%、30%、40%),混合均匀,加入 95% 乙醇 1500 mL 制软材,20 目筛摇摆制粒,60 ℃下沸腾干燥,即得。
- 2.3.2 结果 图 4 显示,在 10% ~ 40% 范围内,成型率都在 80% 左右,而且随着糊精比例提高而增加,但溶化率反而降低。因此,选择 20% ~ 30% 的中间用量即可,具体根据出膏率和服药量进行调整。
- 2.3.3 验证试验 以 20%、25%、30% 糊精为辅料,对制剂成型工艺进行验证试验。称取干膏粉

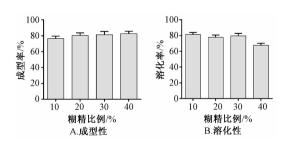


图 4 辅料比例优化结果

Fig. 4 Results of excipient ratio optimization

4、3.75、3.5 kg,加入糊精 1.0、1.25、1.5 kg,混合均匀,加入95% 乙醇 1 500 mL 制软材,制粒,干燥,即得。对其进行成型性和溶化性测定,结果见表 8,可知在 20%~30% 范围内,成型性和溶化性的差别都较小(0.2%~1.2%),故选择在该范围内进行湿法制粒。然后,取颗粒 10 g,加热水200 mL,搅拌 5 min,发现颗粒全部溶化。

	表♂	短证试验结果	(П)	
Tab. 8	Resu	lts of verificati	on tests	(II)

试验号	辅料比例/%	成型率/%	溶化率/%
1	20	80. 29	78. 32
2	25	80. 68	78. 16
3	30	81. 23	78. 23

3 讨论

疏风定喘颗粒干膏粉易吸湿,而且遇水成型后 不易干燥,故制剂辅料的选择非常重要。乳糖溶于 水,具有很好的冲溶性和抗湿性,是理想的稀释 剂,但其一旦吸湿就容易发黏和液化[5];甘露醇 几乎不吸湿,所得颗粒易干燥,但价格昂贵,而且 吸湿后颗粒较易液化[9-10],在某些特殊情况下可以 考虑;山梨醇作为填充剂和赋形剂,正逐步被欧美 等国各大制药公司应用,特别是 γ-山梨醇,其吸 湿性小、流动性好、硬度大、稳定性高,是优选的 辅料[11],并且它具有一定的甜度,在改善口味的 同时,可避免糖尿病、肥胖症患者的不适;微晶纤 维素吸湿程度稍大,但所得颗粒较易成型,而且吸 湿后颗粒仍可维持原有外观, 也是一种常用的制粒 辅料[10]; 糊精广泛应用于制备颗粒剂, 价廉易得, 所得颗粒外观均匀美观, 具有较好的抗湿能力及溶 化性。

本实验采用混料设计, 从颗粒性状、成型性、 吸湿性、溶化性、流动性等方面对上述几种辅料及 其配比进行考察。测定溶化性时, 在《中国药典》 的基础上进行改进,采用可量化的指标(溶化率) 对颗粒溶化性进行评价。结果, 糊精在该制剂成型 时具有优势,而且价廉易得,为较理想的辅料。进 一步考察后发现,在服药量固定的情况下,糊精可 在20%~30%范围内调整以适应出膏率变化、并 可为后续矫味剂的使用预留出一定空间。

参考文献:

- [1] 李锐华,李 英,王永香,等. Box-Behnken 响应面法优化 疏风定喘颗粒黄芩组的提取工艺研究[J]. 世界科学技术: 中医药现代化, 2015, 17(11): 2290-2295.
- 崔福德. 药剂学[M]. 北京: 人民卫生出版社, 2011: 252. [2]
- 姬 涛,管 鸽. 沸腾干燥制粒技术在固体制剂干燥中的 应用研究[J]. 医学信息, 2011, 24(4): 1556-1557.
- [4] 岳国超,严 霞,赵映波,等.湿法制粒工艺参数对颗粒 成型性的影响[J]. 中南药学, 2015, 13(6): 587-590.
- 朱裕林,张 兰,彭祥雪,等. 骨疏灵颗粒防潮辅料优选 [5] [J]. 中草药, 2014, 45(14): 2005-2008.
- 商思伟,赵玉莲,王从武,等.青天葵颗粒辅料筛选[J]. [6] 中国兽医杂志, 2014, 50(4): 43-46.
- 郭志烨,杨明,韩丽,等. 乌芍止痒颗粒成型工艺 [7] [J]. 中成药, 2015, 37(9): 1942-1946.
- [8] 李奉勤, 范文成, 史冬霞, 等. 止嗽颗粒成型辅料的筛选 与工艺研究[J]. 中国药房, 2007, 18(15): 1150-1152.
- 何倩灵. 防潮辅料在中药固体制剂中的应用研究[D]. 成 [9] 都:成都中医药大学,2011.
- 李小芳,何倩灵,向永臣,等. 黄芪多糖颗粒防潮辅料的 [10] 研究[J]. 中国实验方剂学杂志, 2011, 17(9): 11-14.
- [11] 周日尤、梁 智. 山梨醇在医药上的应用与开发[J]. 广 两化工, 2000, 29(3): 25-28, 43.