赵新望¹, 徐文华¹, 赵 阳¹, 伍燕宏¹, 罗 蔚¹, 朱梓铭¹, 郑景辉^{2*} (1. 广西中医药大学,广西 南宁 530001; 2. 广西中医药大学附属瑞康医院,广西 南宁 530001)

摘要:目的 基于网络药理学研究川芎治疗冠心病的作用机制。方法 以化合物口服药物生物利用度 (OB) 和类药性 (DL) 为标准,根据中药系统药理学技术平台 (TCMSP) 等数据库预测和筛选川芎化合物及治疗冠心病的作用靶点。然后,Cytoscape 3.5.1 软件构建川芎化合物-靶点网络,String 平台构建靶点蛋白相互作用网络,生物学信息注释数据库 (DAVID) 对靶点基因进行 GO 富集分析及 KEGG 通路分析。结果 从川芎中筛选得到 7 个化合物,作用于 31 个冠心病靶点,关键靶点包括血管性血友病因子、凝血因子 2、跨膜受体蛋白 1、心肌细胞增强因子 2 A、超氧化物歧化酶 1、氧化氮合酶 2 等,参与对缺氧的反应、对过氧化氢的反应、血压调节、心脏发育、凝血功能等生物过程,调节补体级联与凝血级联、缺氧诱导因子-1 信号通路、过氧化物酶体等代谢通路。结论 川芎可能主要通过抗氧化、抗炎、抗凝血、促进血管生成、扩张血管、调节血压等方面来治疗冠心病。

关键词:川芎;冠心病;网络药理学

中图分类号: R285 文献标志码: A 文章编号: 1001-1528(2019)09-2096-06

doi: 10. 3969/j.issn.1001-1528. 2019. 09. 015

Action mechanisms of *Chuanxiong Rhizoma* in treating coronary heart disease based on network pharmacology

ZHAO Xin-wang¹, XU Wen-hua¹, ZHAO Yang¹, WU Yan-hong¹, LUO Wei¹, ZHU Zi-ming¹, ZHENG Jing-hui²*

(1. Guangxi University of Chinese Medicine, Nanning 530001, China; 2. Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530001, China)

KEY WORDS: Chuanxiong Rhizoma; coronary heart disease; network pharmacology

我国心血管疾病发生率不断升高,《中国心血管病报告 2017》推算目前患病人数为 2.9 亿,其中冠心病 1 100 万^[1],2013 年死亡人数较 1990 年增加了 90.9%^[2]。冠心病属于中医"胸痹""真心痛""厥心痛"范畴,中药在相关治疗方面有其独到之处,其中川芎有活血行气、祛风止痛功效,其所含成分川芎嗪的作用已得到广泛的认可,但研究发现该药材主要化合物为苯酞类和酚酸类,前者含有量更高,而后者很低很少,甚至在许多样品中无法被检测出来,故川芎嗪无法作为川芎质量评价的指标^[3]。

本研究通过网络药理学方法,筛选出川芎主要化 合物成分及其发挥作用的相关靶点,挖掘冠心病已知 相关靶点,通过生物学信息注释数据库(DAVID)对 靶点基因本体(GO)生物过程,以及京都基因与基 因组百科全书(KEGG)中代谢通路进行分析,为该 药材治疗冠心病的进一步探索提供参考。

1 材料

TCMSP (中药系统药理学数据库及分析平台, http://lsp. nwu. edu. cn/tcmsp. php); Pharm-Mapper (反向药效团匹配数据库, http://59.78.98.102/pharmmapper/submit _ file. php); String (蛋白互作网络数据库, https://string-db.org/cgi/network. pl); GeneCards 数据库 (https://www.genecards.org/); Venny2.1.0

收稿日期: 2019-01-15

基金项目: 国家自然科学基金项目 (81660776); 广西自然科学基金项目 (2016GXNSFAA380296); 广西中医药大学研究生教育创新计划项目 (YCSY2018034); 2018 年广西壮族自治区财政资助博士学位授予单位立项建设项目 (桂学位 [2018] 5)

作者简介: 赵新望 (1994—), 男, 硕士生, 研究方向为中医内科学 (心血管疾病)。Tel: 17377112346

^{*}通信作者:郑景辉(1976—),男,博士,教授,研究方向为中西医结合心脑血管疾病防治

(http://bioinfogp.cnb.csic.es/tools/venny/); Cytoscape3.2.1 软件 (http://cytoscapeweb.cytoscape.org/); DAVID (基因注释数据库,http://david.nifcrf.gov/); GraphPad Prism 7.00 软件 (https://www.graphpad.com/)。

2 方法

- 2.1 川芎中化合物及作用靶点的筛选 依托 TCMSP 检索出与川芎相关的所有化合物成分,基于样本量、数据的复杂性及文献报道,根据药代动力学 (ADME) 参数确定药物口服生物利用度≥30%、类药性≥0.18 作为筛选条件,将筛选后得到的化合物成分上传到 PharmMapper 服务器,得到其作用靶点。最后,应用 String 数据库通过输入靶点名称并限定物种为人,将检索得到的所有靶点校正为其官方名称 (official symbol) 后,获取与化合物成分相关的靶点。
- 2.2 冠心病潜在作用靶点的筛选 通过 GeneCards 数据库检索与冠心病发病相关的靶点,它可通过 Gifts 算法来计算靶点与疾病之间的相关度,并以 其进行排序,选择相应靶点。
- 2.3 靶点相互作用网络图的构建与分析 通过 venny2.1.0 软件将川芎成分靶点与冠心病疾病靶 点取交集,得到川芎治疗冠心病的潜在作用靶点。然后,由 String 数据库得到靶点相互作用网络图。
- 2.4 作用靶点富集分析网络图的构建 应用 David 数据库对川芎作用靶点的生物过程 (BP)、分子功能 (MF)、细胞成分 (CC) 进行 KEGG 通路富集分析,采用 Omicshare 软件绘制 KEGG 通路富集分析气泡图,以进一步揭示川芎治疗冠心病的作用机制。
- 2.5 化合物-作用靶点网络图的构建 将川芎化合物和作用靶点导入 Cytoscape 软件,构建川芎化合物-靶点网络,预测出川芎治疗冠心病发挥主要作用的靶点与化合物。

3 结果

3.1 化合物及其作用靶点 检索得到川芎化合物有 189 个,符合筛选条件的 7 个,分别为扁桃醇、杨梅酮、含川哚、洋川芎醌、川芎萘呋内酯、谷甾醇、FA,见表 1。然后,将 PharmMapper 数据库中所有靶点删除重复的,整合得到川芎作用靶点 481 个;经 GeneCards 数据库检索,整合得到冠心病靶点 5 264 个,取相关度大于 20 的 443 个,通过 venny2. 1. 0 软件取两者交集,韦恩图见图 1;川芎、冠心病作用靶点取交集,得到潜在作用靶点 31 个,见表 2。

表 1 川芎关键化合物

Tab. 1 Key compounds in Chuanxiong Rhizoma

序号	Mol 编码	化合物	口服生物利用度/%	类药性
1	MOL001494	扁桃醇	42. 00	0. 19
2	MOL002135	杨梅酮	40. 60	0.51
3	MOL002140	含川哚	65. 95	0. 27
4	MOL002151	洋川芎醌	47. 66	0. 24
5	MOL002157	川芎萘呋内酯	42. 31	0.71
6	MOL000359	谷甾醇	36. 91	0.75
7	MOL000433	FA	68. 96	0.71

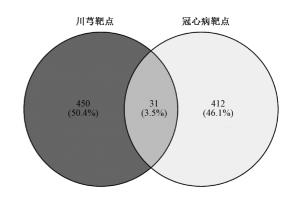


图 1 韦恩图 Fig. 1 Venn diagram

......

表 2 川芎治疗冠心病的关键靶点

Tab. 2 Key targets for *Chuanxiong Rhizoma* in treating coronary heart disease

coronary neart disease					
序号	基因符号	基因卡编码	相关度		
1	VWF	GC12M005917	80. 74		
2	INS	GC11M002159	80. 64		
3	F2	GC11P046740	67. 82		
4	NOTCH1	GC09M136527	56. 86		
5	MEF2A	GC15P099565	54. 23		
6	F5	GC01M169481	53. 88		
7	MMP9	GC20P046008	46. 93		
8	SOD1	GC21P031659	45. 04		
9	MMP2	GC16P055424	44. 68		
10	NOS2	GC17M027756	39. 43		
11	NR3C2	GC04M148078	38. 65		
12	HMOX1	GC22P035380	34. 27		
13	TTR	GC18P031591	33. 26		
14	CITED2	GC06M139316	31. 64		
15	SOD2	GC06M159669	31. 28		
16	GLB1	GC03M033013	30. 91		
17	MB	GC22M035606	30. 62		
18	LGALS2	GC22M037570	28. 56		
19	PTGS2	GC01M186640	28. 51		
20	F13A1	GC06M006144	28. 38		
21	F11	GC04P186265	26. 80		
22	CYP7A1	GC08M058476	26. 48		
23	S100B	GC21M046599	24. 69		
24	VDR	GC12M047841	23. 29		
25	B2M	GC15P044711	22. 16		
26	AGL	GC01P099850	22. 02		
27	EGF	GC04P109912	21. 50		
28	TKT	GC03M053258	21. 26		
29	ENO2	GC12P006913	20.66		
30	ITPKC	GC19P040718	20. 56		
31	CYCS	GC07M025158	20. 52		

3.2 靶点相互作用网络 由 String 数据库得到靶点相互作用网络图 (图 2), 其中"边"代表作用靶点之间的关联, 其粗细用 combine score 表示, "边"越粗, combine score 值越大, 代表其结合度越大; 节点代表作用靶点。由图可知, 共有 31 个节点、93 条边, 平均节点度为 6, 平均局部聚类系数为 0.605。

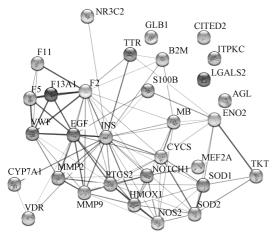
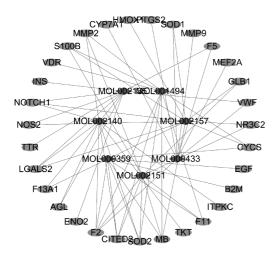
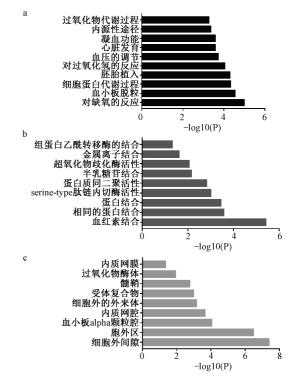



图 2 川芎靶点蛋白相互作用网络图
Fig. 2 Protein interaction network of
Chuanxiong Rhizoma tragets

3.3 化合物-靶点相互作用网络图 通过 Cytoscape 3.5.1 软件构建川芎治疗冠心病化合物-靶点相互作用网络图 (图 3),体现了川芎治疗冠心病多成分、多靶点协同作用的特点。



注:里面小圈为川芎化合物,外面小圈为作用靶点

图 3 化合物-靶点相互作用网络图 Fig. 3 Compounds-targets interaction network

3.4 靶点的 GO 富集分析 利用 David 数据库,从生物过程、分子功能、细胞成分 3 个水平对 31 个关键靶点进行分类分析,分别得到 70、16、15条,

P<0.05 者分别为 56、9、9条。然后,通过 Graph-Pad Prism 7 软件将这些条目做成可视化条形图 (生物过程条目较多,取排名前 10 的条目),见图 4。

注: a~c分别为生物过程、分子功能、细胞成分 图 4 GO 富集分析

Fig. 4 GO enrichment analysis

3.5 KEGG 通路富集分析 对川芎作用于冠心病主要的 31 个靶点进行 KEGG 通路富集分析,得到6条 P<0.05 者,再通过 Omicshare 软件对其进行可视化分析,气泡图见图 5。

4 讨论

网络药理学可从分子水平上预测药物治疗疾病的靶点、通路等,近年来得到了越来越广泛地认可和应用,故本研究通过该方法研究川芎治疗冠心病的作用机制,结果得到7个主要化合物,31个作用于冠心病的主要靶点,主要涉及凝血、血管生成、血管扩张、炎症反应、抗氧化、血压调节6个生理病理过程。血管性血友病因子(VWF)及凝血因子(F2、F5、F11、F13A1)主要与凝血过程有关,VWF与血小板结合后可导致动脉粥样斑块形成,而VWF缺陷的小鼠中动脉粥样斑块较少[4];F2激活是凝血过程的第一步,故抗凝治疗为冠心病重要治疗方案;血管表皮生长因子(EGF)介导的信号级联在血管新生过程中发挥重要作用,是最重要的促血管形成和分化调节因子之

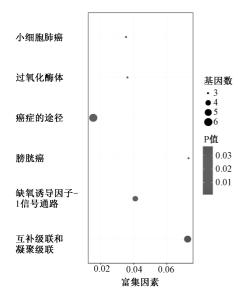


图 5 KEGG 通路富集分析高级气泡图 Fig. 5 Senior bubble chart for KEGG pathway enrichment analysis

一,细胞在缺氧时其合成量会升高 12 倍,可明显促进全身多处组织器官的血管内皮细胞增殖、迁移、趋化^[5-6]; 肌细胞特异性增强因子 2A(MEF2A)在动脉粥样硬化小鼠主动脉内皮细胞中表达降低,该基因沉默可明显上调小鼠主动脉内皮细胞间黏附分子-1、血管细胞黏附分子-1、纤溶酶原激活物抑制剂-1 表达^[7]。

血管扩张方面,一氧化氮合酶 (NOS) 催化左 旋精氨酸时可产生 NO, 具有强烈的扩血管作用, 能降低平均动脉血压,调节全身各血管静息张力, 也是心脏血流动力学调节的重要因子[8]。炎症反 应方面, 跨膜受体蛋白 1 (Notch1) 在巨噬细胞分 化过程中可促进 M1 型巨噬细胞的激活和细胞因子 的释放引起炎症反应,导致动脉粥样硬化,干扰 Notch1 信号通路则可明显促进抗炎症型 M2 型巨噬 细胞的产生,上调抗炎症细胞因子的分泌[9];半 乳凝集素 (LGALS) 可结合 CD98 促进巨噬细胞激 活,活化的巨噬细胞分泌纤维化细胞因子,刺激肌 成纤维细胞的转化, 最终参与不良心脏重构和心肌 纤维化。MacKinnon等[10]发现,动脉粥样硬化小鼠 中缺乏 LGALS 的内皮下几乎没有动脉斑块形成。 抗氧化方面, 机体在缺血、缺氧时可产生大量氧自 由基, 肌红蛋白 (MB) 是一种含亚铁血红素的低 分子, 可运输和储存氧气, 不同原因引起心肌组织 损伤均可导致血液中 MB 水平增加, 故它是急性心 梗早期最灵敏的指标;超氧化物歧化酶 (SOD) 是 生物体内最重要的抗氧化酶, 为生物体内清除氧自

由基的首要物质,其血清水平与血管结构和功能密切相关,故可用于标记心血管变化;调脂方面,上调胆固醇-7α 羟化酶 (CYP7A1) 和过氧化物酶体增殖物激活受体α (PPARα) 表达可调节血脂[¹¹],降低血压,以达到改善动脉粥样硬化的目的;醛固酮是肾素-血管紧张素系统的一部分,其激活程度与冠心病严重程度密切相关,川芎有效成分可能通过与醛固酮受体结合,以负反馈机制减少醛固酮的分泌,减低激活程度,降低血压。然后,对31个主要靶点进行 GO 富集分析,得到其涉及的生物过程 (BP)、分子功能 (MF)、细胞成分 (CC) 相关信息。

P<0.05 的前 20 个生物过程中与冠心病相关的 有17个,主要涉及氧化应激反应、凝血、血管生 成、血管扩张、血压调节等方面。缺氧时, 机体产 生大量的氧自由基,超氧化物歧化酶将这些氧自由 基转变为过氧化氢,然后由过氧化氢酶转变为无害 的水和氧,以减轻缺氧对机体造成的损害,而且此 时可激活缺氧诱导因子,缺氧诱导因子可使血管再 生和修复微血管梗阻[12]:根据凝血酶原激活物形 成始动途径和参与因子的不同, 可将凝血途径分为 内源性、外源性, 前者蛋白参与心血管疾病发生, 导致血栓形成[13-17]; 血小板通过脱颗粒作用释放 EGF, 促进血管内皮细胞增殖, 刘一剑等[18] 研究 表明,其水平升高在冠心病的发生发展中可能作为 一个独立危险因子存在; MEF2A 基因沉默可明显 上调 ICAM-1、VCAM-1、PAI-1 表达, 其变异更容 易导致冠心病的发生[19]: nNOS 不仅可生成 NO 来 扩张血管,还可生成 H,O,,同样可起到扩张血管 的作用,大鼠血管内膜被乙酰胆碱刺激后会增加 nNOS 生产 H₂O₂^[20]; 刘红琼等^[21]报道, 脉压、脉 压指数与高血压患者冠心病发生有关,特别是脉压 指数越大, 冠心病发生率越高, 冠脉病变越严重, 故血压调节对冠心病治疗非常重要。

P<0.05 的分子功能有 9 个, 涉及抗氧化、延长作用时间、保护心肌、抗凝 4 个方面。血红素结合蛋白是一种血浆急性期糖蛋白, 其功能主要是与循环中多余的游离血红素结合, 并转移到特定的细胞处理^[22], 对抗氧化应激反应, 减轻多余的游离血红素造成的组织损伤^[23]; 蛋白结合是指药物进入血液循环与血浆蛋白的结合, 成为结合型药物, 暂时失去一般药理活性, 并"储存"在血液中,起到药库的作用,对于药物作用及其维持时间长短有重要意义,一般蛋白结合率高的药物体内消除会

Vol. 41 No. 9

比较慢,作用维持时间长,川芎化合物与血浆蛋白的结合力较强^[24];石天尧等^[25]发现,心肌缺血/再灌注大鼠模型血清中肌酸激酶活性和丙二醛水平显著降低,表明半乳糖苷具有明显的心肌保护作用;一些研究表明,经高镁培养基培养的内皮细胞中NO产生增加,可防止NF-κB活化,降低基质金属蛋白酶 9(MMP-9)活性,上调 VWF 蛋白水解,抑制血小板黏附^[26-27],达到抗凝效果。

P<0.05 的细胞成分有 9 种, 涉及炎症反应、 内质网应激反应、氧化应激反应3个方面。血小板 α 颗粒是血小板中可分泌蛋白质的主要贮存部位. 在冠状动脉粥样病变时其膜蛋白表达增高,从而介 导炎症细胞黏附聚集在动脉粥样斑块周围,造成局 部炎症细胞的浸润性反应,释放大量组织活性因 子, 在这些组织活性因子的共同作用下最终导致斑 块稳定性下降、斑块破裂^[28];内质网(ER)是在 真核细胞中发现的一种细胞器,约有30多种膜结 合蛋白、另有30多种位于内质网腔、其分布具有 异质性, 在冠心病患者中同型半胱氨酸诱导内皮祖 细胞内质网应激介导的半胱天冬酶 3 活化增强,证 明内质网应激反应与冠心病的发生机制可能存在关 联[29];过氧化物酶体是一种存在于几乎所有真核 细胞中的细胞器^[30],可把氧自由基转化为 H₂O₂,而 发挥抗氧化的作用。

对川芎作用于冠心病主要的 31 个靶点进行 KEGG 通路富集分析,得到 P<0.05 的通路 6条。 其中,补体级联与凝血级联、缺氧诱导因子-1信 号通路、过氧化物酶体通路与冠心病相关, 涉及凝 血过程、炎症反应、氧化应激反应、血管扩张、心 肌保护等方面:凝血因子是凝血过程的主要参与 者,川芎作用于冠心病的主要靶点包括多种凝血因 子,由此推测它可能通过抑制其表达来达到抗凝的 目的,从而改善冠状动脉粥样硬化的程度;补体系 统成分由30多种蛋白质和蛋白质片段组成,主要 分为固有成分(Clqrs-C9、B/D/P 因子、MBL、 丝氨酸蛋白酶等)、补体受体(CR1、CR2、CR3、 C3a R, C5aR等)和调节分子(C1INH、DAF、H 因子等), 黄政^[31]认为, 后处理能够上调 HSP90 表达,并减少缺血-再灌注(缺氧/复氧)诱导的 补体 C3/C5a、NF-κB、IL-1β、TNF-α 表达及心肌 细胞凋亡;早期缺氧时,缺氧诱导因子激活后可激 活下游 EGF、NOS2 基因表达, EGF 表达可促进新 生毛细血管生成, NOS2 作为催化剂参与产生 NO, 进而扩张血管,调节心脏血流;研究表明[32],缺

氧时 HIF-1α 表达增加能活化 VEGF 基因转录,增强其 mRNA 稳定性,上调其 mRNA 表达,从而促使血管生成,降低缺氧对组织的负面影响;缺氧诱导因子-1α (HIF-1α) 是机体细胞在低氧环境中产生的一种转录因子,参与低氧反应基因的调控,可促进血红素氧化酶-1 (HO-1)、血管生长因子(VEGF)等因子表达,其中 HO-1 具有抗氧化、抗炎、扩张血管作用,被认为是血管保护因子,而且HIF 诱导的 HO-1 对缺血-再灌注损伤具有长期的心肌保护作用^[33]。

综上所述,川芎可能主要通过抗氧化、抗炎、抗凝血、促进血管生成、扩张血管、调节血压等方面来治疗冠心病。但本研究仅对一些数据库进行挖掘,对川芎的功效作用进行预测,今后在基础研究、临床实验中还需要进一步验证。化合物以 OB和 DL 作为筛选条件也存在一定局限性,如川芎嗪注射液目前在临床上已取得广泛应用,故不能仅依靠口服利用度来筛选化合物,该值较低者也需要加以重视。另外,本研究只对川芎进行了研究,而在临床上它大多与其他中药进行配伍来治疗冠心病,同时各中药之间的相互作用也未能得到体现,需要不断完善。

参考文献:

- [1] 陈伟伟,高润霖,刘力生,等.《中国心血管病报告 2017》 概要[J]. 中国循环杂志,2018,33(1):1-8.
- [2] 马丽媛, 吴亚哲, 王文, 等.《中国心血管病报告 2017》 要点解读[J].中国心血管杂志, 2018, 23(1): 3-6.
- [3] 朱 尧,刘溦溦,顾 宁,等. 川芎的活性成分及其心血管系统保护作用研究进展[J]. 时珍国医国药,2016,27(7):1701-1704.
- [4] 杨进山. 血管性血友病因子在冠心病中的研究进展[J]. 中国医药导报, 2016, 13(15): 68-71.
- [5] Quittet MS, Touzani O, Sindji L, et al. Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat[J]. Acta Biomater, 2015, 15: 77-88.
- [6] Dzietko M, Derugin N, Wendland M F, et al. Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke [J]. Transl Stroke Res, 2013, 4 (2): 189-200.
- [7] 李松森, 牛晓华, 张守彦, 等. MEF 2A 基因沉默对小鼠 主动脉内皮细胞 ICAM-1、VCAM-1 表达的影响[J]. 中国 循证心血管医学杂志, 2018, 10(6): 685-689.
- [8] 朱 科,张军平,李 萌.神经型一氧化氮合酶在冠心病中的研究进展[J].临床心血管病杂志,2017,33(3):207-210.
- [9] 马建赢, 唐燕华. Notch1 在心血管疾病中的研究现状[J].

- 中国老年学杂志, 2015, 35(18): 5324-5327.
- [10] Mackinnon A C, Liu X, Hadoke P W, et al. Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice [J]. Glycobiology, 2013, 23(6); 654-663.
- [11] Cao Y Bei W, Hu Y, et al. Hypocholesterolemia of Rhizoma
 Coptidis alkaloids is related to the bile acid by up-regulated
 CYP7A1 in hyperlipidemic rats[J]. Phytomedicine, 2012, 19
 (8-9): 686-692.
- [12] Ríos-Navarro C, Hueso L, Miñana G, et al. Coronary serum obtained after myocardial infarction induces angiogenesis and microvascular obstruction repair. role of hypoxia-inducible factor-1A[J]. Rev Esp Cardiol (Engl Ed), 2018, 71(6): 440-449.
- [13] Spreafico M, Peyvandi F. Combined FV and FV III deficiency [J]. *Haemophilia*, 2008, 14(6); 1201-1208.
- [14] Zhang B. Recent developments in the understanding of the combined deficiency of FV and FV III [J]. Br J Haematol, 2009, 145(1): 15-23.
- [15] Nichols W C, Seligsohn U, Zivelin A, et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and V III [J]. Cell, 1998, 93(1): 61-70.
- [16] Neerman-Arbez M, Johnson K M, Morris M A, et al. Molecular analysis of the ERGIC-53 gene in 35 families with combined factor V-factor V III deficiency [J]. Blood, 1999, 93 (7): 2253-2260.
- [17] Nichols W C, Terry V H, Wheatley M A, et al. ERGIC-53 gene structure and mutation analysis in 19 combined factors V and V Ⅲ deficiency families [J]. Blood, 1999, 93 (7): 2261-2266.
- [18] 刘一剑, 谭祖松, 邓 晋, 等. 冠心病患者血清中 HB-EGF、TGF-β1 的表达[J]. 中国医学创新, 2013, 10(31): 1-4.
- [19] Zargar S, Aljafari A A, Wani T A. Variants in MEF2A gene in relation with coronary artery disease in Saudi population [J]. 3 Biotech, 2018, 8(7): 289.
- [20] Endlich P W, Aires R D, Gonçalves R L, et al. Neuronal nitric oxide synthase-derived hydrogen peroxide effect in grafts used in human coronary bypass surgery [J]. Clin Sci (Lond), 2017, 131(10): 1015-1026.
- [21] 刘红琼,刘代国. 老年高血压患者脉压及脉压指数与冠心

- 病相关性研究[J]. 北华大学学报 (自然科学版), 2018, 19(6): 776-779.
- [22] Jung J Y, Kwak Y H, Kim K S, et al. Change of hemopexin level is associated with the severity of sepsis in endotoxemic rat model and the outcome of septic patients [J]. J Crit Care, 2015, 30(3): 525-530.
- [23] Garland P, Durnford A J, Okemefuna A I, et al. Heme-hemopexin scavenging is active in the brain and associates with outcome after subarachnoid hemorrhage [J]. Stroke, 2016, 47 (3): 872-876.
- [24] 李恩华,沈佳伟. 洋川芎内酯 I 与血浆蛋白结合率的测定 [J]. 中国民族民间医药,2018,27(1):44-47.
- [25] 石天尧, 冯书芳, 袁立邦, 等. 酪醇半乳糖苷的合成及对缺血/再灌注心脑的保护作用研究[J]. 心脏杂志, 2010, 22(4): 524-528.
- [26] Zernecke A, Shagdarsuren E, Weber C. Chemokines in atherosclerosis: an update[J]. Arterioscler Thromb Vasc Biol, 2008, 28(11): 1897-1908.
- [27] Dong J F, Cruz M A, Aboulfatova K, et al. Magnesium maintains endothelial integrity, up-regulates proteolysis of ultra-large von Willebrand factor, and reduces platelet aggregation under flow conditions [J]. Thromb Haemost, 2008, 99 (3): 586-593.
- [28] 杨孟其, 韩 旭. 血小板 α 颗粒膜蛋白与冠心病的相关性 及中医辨证治疗[J]. 吉林中医药, 2015, 35(1): 95-98.
- [29] Li L, Hu B C, Gong S J, et al. Homocysteine-induced caspase-3 activation by endoplasmic reticulum stress in endothelial progenitor cells from patients with coronary heart disease and healthy donors[J]. Biosci Biotechnol Biochem, 2011, 75(7): 1300-1305.
- [30] Gabald on T. Peroxisome diversity and evolution [J]. *Philos Trans R Soc Lond B Biol Sci*, 2010, 365(1541): 765-773.
- [31] 黄 政. 心肌缺血后处理中 miR-499 调控的 HSP90 对补体介导的心脏免疫炎症反应的影响及机制研究[D]. 南宁:广西医科大学, 2018.
- [32] 辛 娜, 吴跃刚, 王瑶等. 冠心病患者血清补体 C1q 水平 变化及其临床意义[J]. 检验医学与临床, 2016, 13(20): 2902-2903, 2906.
- [33] 张国红, 陈宋明. 冠心病患者缺氧诱导因子-1α 与血红素 氧化酶-1 的相关性研究[J]. 中国全科医学, 2011, 14 (15): 1662-1664.