「科研报道]

贾氏银柴退热汤提取工艺的优化

谭丽媛. 翟康欣. 遆安航. 李思思. 刘 瑞. 郭爱玲. 张淑蓉* (山西中医药大学中药学院,山西 晋中 030600)

摘要:目的 优化贾氏银柴退热汤提取工艺。方法 以煎煮时间、煎煮次数、加水量为影响因素,绿原酸、黄芩苷转 移率为评价指标,Box-Behnken 响应面法优化提取工艺。结果 最佳条件为煎煮时间 60 min,煎煮次数 2 次,加水量 12倍,绿原酸、黄芩苷转移率分别为 42.70%、78.97%。结论 该方法简便准确,专属性强,可用于提取贾氏银柴退

关键词: 贾氏银柴退热汤; 提取; Box-Behnken 响应面法

中图分类号: R284.2

文献标志码:B

文章编号: 1001-1528(2021)06-1575-04

doi:10.3969/j.issn.1001-1528.2021.06.034

急性上呼吸道感染是常见疾病,全年都可发生,由病 毒和细菌引起,由于感冒的致病原主要是病毒,而且其种 类繁多,目前尚未找到理想的具有特殊疗效的疫苗和药物, 仍处于对症治疗阶段[1-3]。贾六金主任医师是首届全国名中 医,从事中医儿科临床及教学四十余载,擅长治疗儿科呼 吸系统疾病,他自创的贾氏银柴退热汤由金银花、连翘、 柴胡、黄芩等药材组成,具有辛凉解表、清热解毒、利咽 透邪之功效, 主治小儿急性上呼吸道感染等疾病[46], 为银 翘散和小柴胡汤加减组合而成,通过适当的配伍可达到标 本兼治的效果, 疗效肯定, 用药易得, 南北通用, 真正做 到了价廉效验,具有广泛的应用和开发前景[7-13]。

提取工艺作为复方中药制备的关键环节、将直接影 响其质量。本实验采用 Box-Behnken 响应面法优化贾氏 银柴退热汤提取工艺,以期为该制剂后期开发应用奠定 基础。

1 材料

- 1.1 仪器 Waters 高效液相色谱仪,配置 Waters 2998 检 测器、Empower 工作站 (美国 Waters 公司); AE240 电子 天平(十万分之一,瑞士梅特勒-托利多公司); FA2104 电 子天平 (万分之一,上海精密科学仪器有限公司); H66MC 超声波清洗机 (无锡超声电子设备公司)。
- 1.2 试剂与药物 黄芩、柴胡、金银花等药材购于安国市 聚药堂药业有限公司、河北全泰药业有限公司、亳州市远 光中药饮片厂、安徽盛堂中药饮片有限公司,连翘采自山 西晋中 (蒸制 30 min 后在 60 ℃以下烘干), 所有药材经山

西中医药大学中药鉴定教研室裴香萍副教授鉴定为 2015 年 版《中国药典》收载品种。绿原酸(批号 110753-201716)、黄芩苷(批号110842-201508)对照品购于中国 食品药品检定研究院。乙腈为色谱纯(批号12960217,瑞 典欧森巴克化学公司); 甲酸为色谱纯 (批号 20141021, 天津市光复科技发展有限公司); 甲醇为分析纯(批号 20140110, 天津市科密欧化学试剂有限公司); 水为娃哈哈 纯净水。

2 方法与结果

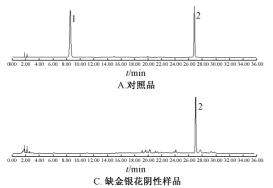
- 2.1 绿原酸、黄芩苷含量测定
- 2.1.1 色谱条件 BDS HYPERSIL C₁₈色谱柱 (150 mm× 4.6 mm, 5 μm); 流动相乙腈 (A) -0.1% 甲酸 (B), 梯 度洗脱,程序见表 1;体积流量 1.0 mL/min;柱温室温; 检测波长 330 nm。

表 1 梯度洗脱程序

时间/min	A 乙腈/%	B 0.1%甲酸/%
0	8. 0	92. 0
10	8.0	92. 0
13	15. 0	85. 0
26	25. 5	74. 5
29	8.0	92. 0
36	8. 0	92. 0

2.1.2 对照品溶液制备 精密称取对照品绿原酸 1.90 mg、 黄芩苷 2.30 mg, 甲醇定容至 10 mL 量瓶中, 摇匀, 即得 (每1 mL分别含2种成分0.38、0.46 mg)。

收稿日期: 2019-12-02


基金项目: 山西省科技厅重点研发项目(201603D3113020); 晋药综合开发利用协同创新中心项目(2017-JYXT-04); 山西中医药大学 科技创新团队项目 (2018TD-008)

作者简介:谭丽媛 (1995—),女,硕士生,从事中药活性成分分析及质量标准研究。Tel: 18435166733, E-mail: 935304417@ qq.com *通信作者: 张淑蓉 (1962—), 女, 教授, 硕士生导师, 从事中药活性成分分析及其药效物质基础研究。Tel: 13935110348, E-mail: zhangsr62@163.com

网络出版日期: 2020-03-16

网络出版地址: http://kns.cnki.net/kcms/detail/31.1368.R.20200315.2325.002.html

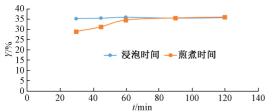
2.1.3 供试品溶液制备 按照处方比例取金银花、柴胡、连翘等药材,蒸馏提取挥发油,蒸馏后水溶液用另外容器收集,药渣与板蓝根等其余药材加 12 倍量水煎煮 2 次,每次 1 h,合并煎液与水溶液,滤过,滤液浓缩至相对密度为1.15~1.20 (80 ℃),60 ℃下干燥。精密称取汤剂提取物0.5 g,置于密塞锥形瓶中,精密加入 50 mL 50% 甲醇,称定质量,超声(功率 250 W、频率 45 kHz)提取 40 min,取出,放冷,50% 甲醇补足减失的质量,摇匀,滤过,取

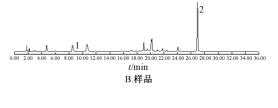
1. 绿原酸 2. 黄芩苷

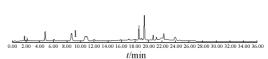
图 1 各成分 HPLC 色谱图

2.1.6 方法学考察 精密吸取 "2.1.2" 项下对照品溶液,在 "2.1.1" 项色谱条件下进样测定。以溶液质量浓度为横坐标 (X),峰面积为纵坐标 (Y) 进行回归,得到回归方程分别为绿原酸 Y=125 858X+3 519.2 (r=0.9999)、黄芩苷 Y=487 976X+13 907 (r=0.9998),分别在 0.04~0.38、0.05~0.46 mg/mL 范围内线性关系良好;精密度、重复性、稳定性 $(12\ h)$ 试验中绿原酸、黄芩苷峰面积 RSD 均小于3%,表明仪器精密度、方法重复性、溶液 $12\ h$ 内稳定性良好;绿原酸、黄芩苷平均加样回收率分别为 105.06%、107.24%,RSD 分别为 1.55%、2.12%。

2.2 单因素试验 以绿原酸、黄芩苷转移率的加权值 (Y) 为评价指标 (Y=绿原酸转移率×50%+黄芩苷转移率×50%), 对浸泡时间 (30、45、60、90、120 min) 和煎煮时间 (30、45、60、90、120 min) 进行考察, 结果见图 2。




图 2 单因素试验结果


2.3 Box-Behnken 响应面法 以煎煮时间 (A)、煎煮次数 (B)、加水量 (C) 为影响因素,"2.2"项下加权值 (Y) 为评价指标,设计三因素三水平 15 组试验,因素水平见表 2,结果见表 3,方差分析见表 4。由此可知,因素 B 有极显著影响 (P<0.01),而因素 A、C 无显著影响 (P>0.05); B^2 有极显著影响 (P<0.01),而因素 A^2 、 C^2 无显

续滤液, 0.45 μm 微孔滤膜过滤, 即得。

2.1.4 阴性样品溶液制备 按方剂处方和工艺,分别制备 缺金银花、缺黄芩的阴性样品,按"2.1.3"项下方法制备,即得。

2.1.5 专属性试验 精密吸取对照品、供试品、阴性样品溶液各 $10~\mu L$, 在"2.1.1"项色谱条件下进样测定,结果见图 1。由此可知,各成分峰形对称,分离度良好,阴性无干扰。

D. 缺黄芩阴性样品

著影响 (P>0.05); 因素 $AB \setminus AC \setminus BC$ 无显著影响 (P>0.05)。回归方程为 $Y=38.26+5.96B-8.26B^2$,相关系数 $R^2=0.9644$,表明拟合情况良好,工艺可行 [14-15];调整相

预测分析。

表 2 因素水平

关系数 $R^2 = 0.9004$, 能解释 90.04% 响应值的变化,可用于

水平	A 煎煮时间/min	B 煎煮次数/次	C 加水量/倍
1	60	1	8
2	90	2	10
3	120	3	12

表 3 试验设计与结果

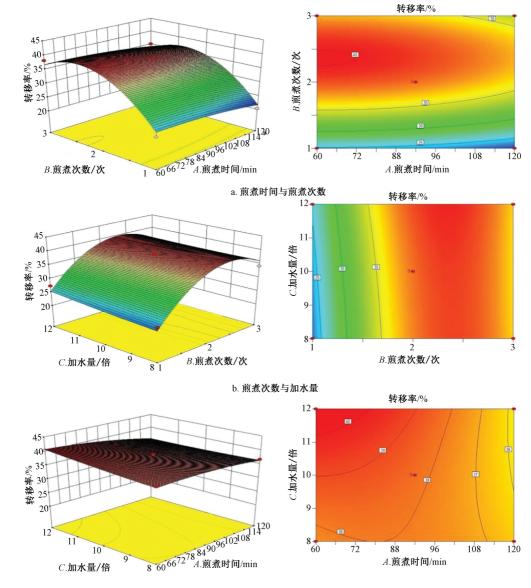

			7-43 <u>-</u> 1341	3-H-1-		
试验号	A 煎煮	B 煎煮	C 加水	绿原酸转	黄芩苷转	Y/%
瓜独与	时间/min	次数/次	量/倍	移率/%	移率/%	1/%
1	90	1	12	41.70	50.60	46. 15
2	90	2	10	42. 90	50.41	46.66
3	120	1	10	35. 20	37. 90	36. 55
4	60	3	10	44. 10	48. 90	46. 50
5	90	3	8	42. 10	66. 56	54. 33
6	90	2	10	47. 30	58. 39	52. 85
7	90	1	8	41. 10	47. 48	44. 29
8	120	2	8	36. 80	53. 24	45. 02
9	90	3	12	41. 10	57. 45	49. 28
10	90	2	10	43.60	57. 76	50.68
11	60	2	12	63. 10	74. 52	68. 81
12	120	2	12	49.00	63. 59	56. 30
13	60	1	10	38. 80	41. 26	40. 03
14	120	3	10	49. 80	71. 15	60.48
15	60	2	8	49. 20	50. 31	49. 76

表 4 方差分析

模型 565. 48 A 19. 42 B 283. 93	自由度 9 1 1 1	均方 62.83 19.42 283.93	F 值 15. 07 4. 66 68. 10	P 值 0. 004 1 0. 083 4
A 19.42 B 283.93	1	19. 42 283. 93	4. 66	0.083 4
B 283. 93	1	283. 93		
	_		68. 10	0.000.4
	1			0.0004
C 2. 70		2. 70	0.65	0.457 8
<i>AB</i> 0. 017	1	0.017	4. 053×10^{-3}	0.9517
AC 3. 47	1	3.47	0.83	0.403 5
BC 1.44	1	1.44	0.35	0.5823
A^2 2. 33	1	2. 33	0.56	0.4879
B^2 251. 70	1	251.70	60. 37	0.0006
C^2 0. 15	1	0. 15	0.037	0.8548
残差 20.85	5	4. 17	_	_
失拟项 20.60	3	6.87	55. 81	0.0177
纯误差 0.25	2	0.12	_	_
总和 586.33	14	_		_

通过 Design Expert 软件对表 3 数据进行响应面分

析^[16-17],结果见图 3。图 3a(固定加水量 10 倍)直观显示,煎煮时间不变时随着煎煮次数增加,响应值先升高后趋于平稳,而煎煮次数不变时随着煎煮时间延长,响应值保持平稳,即煎煮次数 2 次或 3 次时响应值最高,而煎煮时间对其影响不大;图 3b(固定煎煮时间 90 min)直观显示,煎煮次数不变时随着加水量上升,响应值缓慢升高,而加水量不变时随着煎煮次数增加,响应值先升高后趋于平稳,故煎煮次数 2 次或 3 次,或加水量为 12 倍时响应值最高;图 3c(固定煎煮次数 2 次)直观显示,煎煮时间不变时随着加水量上升,响应值逐渐升高,而加水量不变时随着加水量上升,响应值逐渐升高,而加水量不变时随着煎煮时间延长,响应值趋于平稳,故加水量 12 倍时响应值较高,而煎煮时间对其影响不大,综上所述,直观所得最优工艺为煎煮时间 60 min,煎煮次数 2 次,加水量 12 倍;软件所得最优工艺为煎煮时间 120 min,煎煮次数 3 次,加水量 10 倍,2 种方法所得结果差异较大,需作进一步考察。

c. 煎煮时间与加水量 注: 左边 3 张小图均为三维曲面图,右边 3 张小图均为等高线图。

图 3 各因素响应面图

2.4 验证试验 将直观、软件所得优化工艺参数各取 3 批进行验证试验,结果见表 5。由此可知,2 种方法所得结果无明显差异,考虑到提取效率、资源成本,最终选择直观所得优化工艺,即煎煮时间 60 min,煎煮次数 2 次,加水量 12 倍。

表 5 验证试验结果 (n=3)

试验号	绿原酸转移率/%	黄芩苷转移率/%	Y/%
1	41.40	78. 37	59. 89
2	42. 30	76. 04	59. 17
3	42. 90	78. 57	60.74
平均值	42. 20	77. 66	59. 93
4	44. 20	79. 03	61.62
5	42. 30	78. 97	60.64
6	41.60	78. 90	60. 25
平均值	42. 70	78. 97	60. 84

注:试验号 1~3 为直观所得优化工艺参数,试验号 4~6 为软件 所得优化工艺参数。

3 讨论

- 3.1 提取条件优化 本实验针对贾氏银柴退热汤中有效成分绿原酸、黄芩苷极性较大的特点,考察了提取溶剂(50%甲醇、75%甲醇、甲醇、稀乙醇、无水乙醇)、提取方法(超声、加热回流)、提取时间(15、30、45 min)、溶剂用量(25、50、100 mL),最终确定"2.1.3"项下提取条件。
- 3.2 因素水平确定 中药成分复杂,是其具有多种功效或药理作用的物质基础。文献大多以加水量、煎煮时间、煎煮次数、浸泡时间为优化中药提取工艺的影响因素;课题组前期对浸泡时间、煎煮时间进行了单因素试验,发现不同浸泡时间下有效成分转移率无明显差异,故未列入 Box-Behnken 响应面试验中;随着煎煮时间延长,有效成分转移率呈递增趋势,考虑到大生产实际情况,将其确定为60~120 min。另外,工厂大生产时不仅要关注产率,更重要的是能耗及成本问题,结合文献可知煎煮次数一般不超过3次,故本实验将其确定为1~3次;贾氏银柴退热汤中大多为草、叶等松泡类药材,加水量过少时难以浸没药材,而过多时能耗态大,故将其确定为8~12倍。

参考文献:

[1] 杨琴,马红玲,陈佳.急性下呼吸道感染住院儿童的

- 病毒病原学分析[J]. 海南医学, 2018, 29 (13): 1818-1820.
- [2] 马君一,于 明,李雅静. 小儿急性肺炎合并呼吸道感染的临床护理体会[J]. 中国医药指南, 2018, 16(25): 259-260.
- [3] 丁珍凤. 急性上呼吸道感染的护理体会及预防措施分析 [J]. 临床医药文献电子杂志, 2018, 5(38): 120; 127.
- [4] 刘小渭. 贾六金治疗小儿外感发热经验[J]. 中医儿科杂志, 2007, 3(4): 1-2.
- [5] 高 旅,曹 霞,刘小渭,等.贾六金主任医师运用银柴退热汤临证举隅[J].中医儿科杂志,2017,13(1):19-21.
- [6] 张丽琛, 张慧媛, 周 钊. 贾六金主任医师银柴退热汤验 案举隅[J]. 光明中医, 2017, 32(16): 2318-2320.
- [7] 李兴平,白筱璐,雷 玲,等.金银花的解热作用[J]. 中药药理与临床,2012,28(2):37-40.
- [8] 刘玉峰,李鲁盼,马海燕,等.金银花化学成分及药理作用的研究进展[J].辽宁大学学报(自然科学版),2018,45(3):255-262.
- [9] 孙晓波. 柴胡多糖对实验性胃粘膜损伤的保护作用[J]. 吉林中医药, 1991(6): 33-34.
- [10] 卫 昊, 刘 清, 卫伟光. 秦岭柴胡抗菌解热作用的实验研究[J]. 时珍国医国药, 2012, 23(2): 315-316.
- [11] 杨 辉,杨 亮,蒋 玲. 柴胡、竹叶柴胡对小鼠的抗炎 镇痛作用研究[J]. 中国药房, 2012, 23(47); 4442-4444.
- [12] 郑纯威, 丁华熳, 陈 宇, 等. 柴胡皂苷改善大鼠肝纤维 化的实验研究 [J]. 中国中医急症, 2011, 20(5): 755; 774.
- [13] 付国辉,马香芹.黄芩的化学成分及药理作用研究进展 [J].中国当代医药,2015,22(22):18-20.
- [14] 袭荣刚,吴立军,王立波,等.响应曲面法优化延胡索中延胡索乙素的提取工艺[J].沈阳药科大学学报,2017,34(1):84-89.
- [15] 郑 妮,张生潭,汪铁山,等.水蒲桃种子总多酚提取工艺的响应曲面法优化[J].中国实验方剂学杂志,2011,17(17):41-44.
- [16] 孟宪军,李冬男,汪艳群,等.响应曲面法优化五味子多糖的提取工艺[J].食品科学,2010,31(4):111-115.
- [17] 张百霞,郭庆梅,王真真,等.响应曲面法优化金银花总酚酸提取工艺[J].中成药,2013,35(10);2144-2148.