- [6] 武之望,汪 淇,张黎临,等.济阴纲目[M].北京:人民 军医出版社,2009.
- [7] Ye Q. Characterization of volatile constituents of Magnolia denudata Desr flowers by gas chromatography-mass spectrometry with headspace solid-phase microextraction [J]. Asian J Chem, 2013, 25(11): 6199.
- [8] Kim J Y, Lim H J, Lee d Y, et al. In vitro anti-inflammatory activity of lignans isolated from Magnolia fargesii [J]. Bioorg Med Chem Lett, 2010, 40(26): 937-940.
- [9] Zeng Z, Xie R, Zhang T, et al. Analysis of volatile compositions of Magnolia biondii Pamp by steam distillation and headspace solid phase micro-extraction [J]. J Oleo Sci, 2011, 60(12): 591-596.
- [10] Shen Y, Pang E C K, Xue C C L, et al. Inhibitions of mast cell-derived histamine release by different Flos Magnoliae species in rat peritoneal mast cells [J]. Phytomedicine, 2008, 15(10); 808-814.
- [11] 胡 静, 付志博, 桑情妮, 等. 辛夷、辛夷仁和辛夷外苞 片中挥发性成分的比较[J]. 中草药, 2019, 50(7): 1555-1561.
- [12] Kimura I, Kimura M, Yoshizaki M, et al. Neuromuscular blocking action of alkaloids from a Japanese crude drug "Shin-

- I" (Flos Magnoliae) in frog skeletal muscle[J]. Planta Med, 1983, 48(5): 43-47.
- [13] 杨玉燕. 望春花蕾木脂素类化学成分和含量测定方法研究 [D]. 济南:山东中医药大学,2012.
- [14] Talapatra B, Mukhopadhyay P, Dutta L N. Alkaloids of Magnolia campbelli and Magnolia mutabilis [J]. Phytochemistry, 1975, 14(2): 589-590.
- [15] Okumura W, Aoki D, Matsushita Y, et al. Distribution of salicifoline in freeze-fixed stems of Magnolia kobus as observed by cryo-TOF-SIMS[J]. Sci Rep., 2017, 7(1): 5939.
- [16] Talapatra B, Chaudhuri P K, Talapatra S K. (-) Maglifloenone, a novel spirocyclohexadienone neolignan and other constituents from Magnolia liliflora [J]. Phytochemistry, 1982, 21(3): 747-750.
- [17] Porter E A, Kite G C, Veitch N C, et al. Phenylethanoid glycosides in tepals of Magnolia salicifolia and their occurrence in flowers of Magnoliaceae [J]. Phytochemistry, 2015, 117: 185-193.
- [18] 杨 光. 基于物质基础表征与新型化学模式识别方法的辛 夷质量控制与药物动力学研究[D]. 上海:第二军医大学,2017.

地骨皮 HPLC 特征图谱建立及灰分检测

李 婷^{1,2}, 王丹丹⁴, 赵林松², 高 崎⁴, 聂依文², 吴佩颖^{2,3*}, 张 彤^{1*} (1. 上海中医药大学教学实验中心,上海 201203; 2. 上海中医药大学中药学院,上海 201203; 3. 芸豆数 字科技有限公司,四川 成都 610031; 4. 上海上药杏灵科技药业股份有限公司,上海 201703)

摘要:目的 建立地骨皮 HPLC 特征图谱及灰分检测。方法 地骨皮甲醇-0. 15%磷酸提取物的分析采用 platisil ODS 色谱柱 (250 mm×4.6 mm, 5 μm);流动相甲醇-0. 15%磷酸,梯度洗脱;体积流量 1 mL/min;柱温 30 ℃;检测波长 280 nm。灰分测定参照 2015 年版《中国药典》四部通则进行。结果 21 批样品指纹图谱中有 5 个共有峰,特征峰聚类分析结果与相似度分析结果一致,灰分均大于 2015 年版《中国药典》地骨皮项下总灰分标准(11.0%)。结论 该方法稳定可靠,可用于地骨皮的质量控制。

关键词: 地骨皮; 地骨皮乙素; 特征图谱; 灰分; HPLC

中图分类号: R927.2 文献标志码: B

文章编号: 1001-1528(2021)09-2580-06

doi:10.3969/j.issn.1001-1528.2021.09.059

收稿日期: 2019-12-13

基金项目: 国家科技重大专项(2019ZX09201004-002); 上海市科委科研计划项目(18401930600); 中医药传承和科技创新项目(ZYCC2019016); 上海市中医药事业发展三年行动计划 [ZY(2018-2020)-CCCX-2001-04]

作者简介: 李 婷 (1984—), 女, 硕士, 高级实验师, 从事中药新药及质量标准研究。Tel: (021) 51323018, E-mail: liting201304@ 163.com

* 通信作者: 吴佩颖 (1961—), 男, 博士, 教授, 从事中药现代化研究。Tel: (028) 87403342, E-mail: wupeiying@ydsk.com.cn 张 彤 (1972—), 男, 博士, 教授, 从事中药现代化研究。Tel: (021) 51322318, E-mail: zhangtdmj@hotmail.com

地骨皮为常用中药,功能凉血除蒸、清肺降火,用于阴虚潮热、骨蒸盗汗、内热消渴、肺热咳嗽、咯血等症^[1]。2015 年版《中国药典》收载的地骨皮为枸杞 Lycium chinense Mill. 和宁夏枸杞 Lycium barbarum L. 的干燥根皮^[1]。春初或秋后采挖根部,洗净,剥取根皮,晒干^[1]。中药地骨皮来源于茄科枸杞属植物,本属植物约 80 种,主要分布在南美洲,少数种类分布于欧、亚大陆温带,《中国植物志》里记载我国产 7 种 3 变种^[2-3],全国大部分地区均有分布,其中主产于华北和西北地区,并且只有枸杞为广布种。华北地区是商品地骨皮的主产地,其中以山西省产量最大,主要是野生枸根皮作地骨皮用,主产于该省的平遥、阳曲、晋城等地^[4]。根据实际调查和研究,现作药用的地骨皮主要来源于枸杞的根皮,同属的宁夏枸杞和北方枸杞 Lycium chinense var. Potaninii 根皮仅在个别地区作地骨皮用^[5]。

国内外在植物分类生药鉴定、化学成分、药理作用等 方面对中药地骨皮已作了一定的工作。地骨皮中含有生物 碱类、酰胺类、有机酸类、黄酮类等多种成分[6],其中酚 类成分为地骨皮中主要成分,包括地骨皮甲素、地骨皮乙 素、咖啡酰丁二胺等[7]。地骨皮甲素和地骨皮乙素属于精 胺类生物碱,体外实验表明,地骨皮甲素和乙素可以阻断 细胞的炎症活化,避免免疫反应紊乱等[8],另外,还可以 拮抗细菌内毒素[9],同时,地骨皮甲素和地骨皮乙素还是 降压的主要成分[10]。地骨皮也是某些中成药的主要组成药 味,如地骨降糖胶囊、十味降糖颗粒、养血退热丸等。除 药用外, 地骨皮还可用于辅助降血糖保健食品中。以地骨 皮为主要原料制成的地骨皮露常用于体虚骨蒸、虚热口渴 等证的治疗,具有凉营血、解肌热的功能[2]。2015年版 《中国药典》中,地骨皮检验项除性状、显微、薄层、水 分、总灰分、酸不溶性灰分外,并没有含量测定项。陈倩 倩等[11]对47批地骨皮饮片进行质量分析,发现各厂家地 骨皮质量差异较大, 洁净度差和掺伪问题是不合格的主要 原因。为了提高地骨皮药材质量,保障临床用药的安全有 效,本实验在前人工作的基础上,对地骨皮类药材进行含 量测定、特征指纹图谱、灰分等方面的系统研究, 以期为 地骨皮药材的质量评价与控制提供参考。

1 材料

- 1.1 药材 21 批地骨皮购自成都诚实通贸易有限公司, 均为野生资源,由上海中医药大学张彤教授鉴定为正品, 具体信息见表 1。
- 1.2 仪器与试剂 Agilent1260系列高效液相色谱仪(四元泵、DAD 检测器),配置 Chemstation 色谱工作站(美国Agilent公司);BS124S型电子天平(万分之一,北京赛多利斯科学仪器有限公司);XS105DU型电子天平(十万分之一,瑞士梅特勒-托利多公司);JP-100型数控超声波清洗器(深圳市洁盟清洗设备有限公司);Thermo Sorvall ST16R高速冷冻离心机(美国 Thermo Fisher Scientific 公司);HH-S2四孔智控水浴锅(郑州长城科工贸有限公

表 1 样品信息

	70 1 11 11 11	75
编号	批号	来源
S1	YC20190101	山西运城夏县
S2	YC20190102	河南开封尉氏县
S3	YC20190103	河南许昌鄢陵县
S4	YC20190104	河南郑州新密市
S5	YC20190105	山西大同浑源县
S6	YC20190401	甘肃兰州榆中县
S7	YC20190402	甘肃白银靖远县
S8	YC20190403	河南三门峡灵宝市
S9	YC20190501	甘肃定西陇西县
S10	YC20190502	甘肃天水秦安县
S11	YC20190702	甘肃兰州永登县
S12	YC20190806	陕西渭南澄城县
S13	YC20190807	甘肃平凉静宁县
S14	YC20190808	宁夏固原彭阳县
S15	YC20190901	甘肃天水甘谷县
S16	YC20191121	甘肃天水武山县
S17	YC20191122	甘肃庆阳宁县
S18	YC20191103	甘肃兰州西固区
S19	YC20191104	甘肃陇南武都区
S20	YC20191201	甘肃天水武山县
S21	YC20191202	山西运城闻喜县

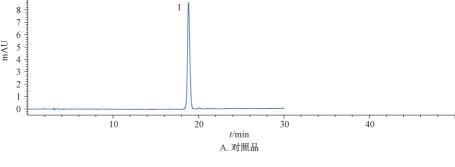
司); SXL-1008 程控箱式电炉(上海精宏实验设备有限公司)。

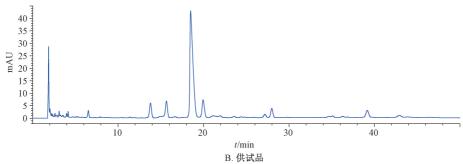
地骨皮乙素对照品(批号 120099-201903, 纯度≥ 98%, 安徽西青果生物科技有限公司)。乙腈(色谱纯, 美国 Honeywell 公司); 其他试剂均为分析纯; 水为超纯水。

2 地骨皮乙素含量测定

2.1 色谱条件 Dikmatech PlatisilODS 色谱柱 $(4.6 \text{ mm} \times 250 \text{ mm}, 5 \text{ μm})$; 流动相 0.15%磷酸 (A) -甲醇 (B), 梯度洗脱,程序见表 2;体积流量 1 mL/min; 柱温 $30 \text{ $^\circ$}$; 检测波长 280 nm; 进样量 5 μL。理论塔板数按地骨皮乙素峰计,应不低于 10 000。

表 2 梯度洗脱程序


时间/min	0.15%磷酸/%	甲醇/%	
0	88	12	
10	88	12	
20	84	16	
40	78	22	
50	78	22	


- 2.2 对照品溶液制备 取地骨皮乙素适量,精密称定, 20% 甲醇和 0.15% 磷酸的混合溶液制成质量浓度为 2.0 mg/mL的溶液,即得。
- 2.3 供试品溶液制备 将地骨皮粉碎,过 4号筛,精密称取粉末约 0.2 g,置于 50 mL 离心管中,加入流动相溶液 7 mL,超声 (350 W)处理 30 min,离心 (4 000×g) 10 min,取上清液转移至 25 mL量瓶中,重复提取 2次,残渣用流

Vol. 43 No. 9

动相溶液洗涤,合并提取液,用流动相溶液洗涤定容,经 0.45 μm 微孔滤膜滤过,即得 [12]。

2.4 专属性实验 按 "2.3"项下方法制备供试品、对照品溶液,在 "2.1"项色谱条件下进样,结果见图 1。

1. 地骨皮乙素

图 1 地骨皮 HPLC 色谱图

2.5 方法学考察

2.5.1 线性关系考察 取地骨皮乙素母液,以 20% 甲醇和 0.15% 磷酸的混合溶液稀释,制备成质量浓度分别为 40、80、160、240、480 μ g/mL 的对照品溶液,精密吸取 5 μ L, 在 "2.1" 项色谱条件下进样,以地骨皮乙素质量浓度为横坐标 (X),峰面积为纵坐标 (Y) 进行回归,得方程为 Y= 4.185 4X-1.267 3(r=0.999 97),在 40.0~480 μ g/mL 范围内线性关系良好。

2.5.2 精密度试验 精密吸取上述低、中、高 3 个质量浓度对照品溶液各 5 μ L, 在 "2.1" 项色谱条件下进样 6 次,测得地骨皮乙素峰面积 RSD 为 0.27%、0.26%、0.40%,表明仪器精密度良好。

2.5.3 重复性试验 取同一批供试品 (批号 YC20190101) 约 $0.2\,\mathrm{g}$, 精密称定,平行 $6\,\mathrm{G}$, 按 "2.3" 项下方法制备 供试品溶液,在 "2.1" 项色谱条件下进样,测得地骨皮乙素含量 RSD 为 0.78%,表明该方法重复性良好。

2.5.4 稳定性试验 取同一批供试品 (批号 YC20190101) 约 0.2 g, 精密称定,按 "2.3"项下方法制备供试品溶液,于 0.2.4.8.12 h在 "2.1"项色谱条件下进样,测得地骨皮乙素峰面积 RSD 为 1.69%,表明供试品溶液在室温下 12 h 内稳定性良好。

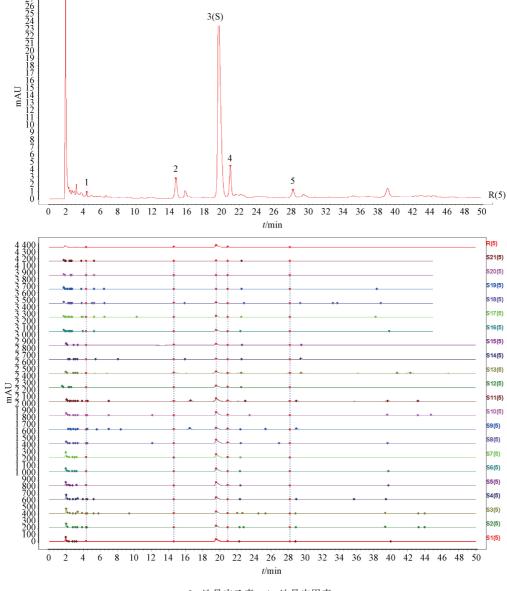
2.5.5 加样回收率试验 取9份含量已知的样品(批号YC20190101)约0.1g,精密称定,分别按80%、100%、120%水平加入对照品溶液,各平行3份,按"2.3"项下方法制备供试品溶液,在"2.1"项色谱条件下进样。测得地骨皮乙素加样回收率95%~105%,平均加样回收率为

100.8%, RSD 为 2.36%。

2.6 地骨皮含量测定 按 "2.3" 项下方法制备供试品溶液,在 "2.1" 项色谱条件下进样,结果见表 3。由此表明,21 批地骨皮中地骨皮乙素含量范围为 0.13% ~ 5.24%,建议在 2020 年版《中国药典》中增加地骨皮含量测定项,即按干燥品计算,本品含该成分不低于 1.0%。

表 3 地骨皮乙素含量测定结果

衣 3 地 有 及 乙 条 召 里 冽 足 绐 未				
编号	来源	地骨皮乙素/%	RSD/%	
S1	山西运城夏县	2. 77	1. 30	
S2	河南开封尉氏县	2. 11	2. 49	
S3	河南许昌鄢陵县	2. 28	1. 14	
S4	河南郑州新密市	2. 55	1. 36	
S5	山西大同浑源县	3. 93	2. 66	
S6	甘肃兰州榆中县	3. 57	2. 49	
S7	甘肃白银靖远县	3. 79	1. 96	
S8	河南三门峡灵宝市	5. 24	0. 88	
S9	甘肃定西陇西县	2. 44	2. 24	
S10	甘肃天水秦安县	4. 95	2. 49	
S11	甘肃兰州永登县	4. 33	2. 35	
S12	陕西渭南澄城县	2. 57	1. 74	
S13	甘肃平凉静宁县	2. 44	2. 56	
S14	宁夏固原彭阳县	0. 52	3. 00	
S15	甘肃天水甘谷县	1.53	1. 34	
S16	甘肃天水武山县	1.52	3. 00	
S17	甘肃庆阳宁县	1.50	1. 75	
S18	甘肃兰州西固区	0.58	1. 26	
S19	甘肃陇南武都区	0.33	1. 16	
S20	甘肃天水武山县	0. 13	2. 90	
S21	山西运城闻喜县	0.33	2. 66	


3 地骨皮指纹图谱建立

- 3.1 供试品溶液制备 取各批药材粉末 (过 4 号筛)约 0.2 g, 精密称定, 置 50 mL 离心管中, 精密加入流动相溶 液 25 mL, 超声 (350 W) 处理 30 min, 离心 10 min (约 4 000×g), 经 0.45 μm 微孔滤膜过滤, 即得^[11]。
- 3.2 色谱条件 同"2.1"项。
- 3.3 方法学考察
- 3.3.1 精密度试验 精密吸取同一供试品溶液 (批号 YC20190101) 5 μL, 在 "3.2" 项色谱条件下进样 6 次, 以 共有峰的3号峰(地骨皮乙素)作为内标[13],测得共有峰 相对保留时间、相对峰面积 RSD 分别为 0.05% ~ 0.45%、 1.22%~2.30%,表明仪器精密度良好。
- 3.3.2 重复性试验 精密称取同一批样品(批号 YC20190101) 6份, 按"3.1"项下方法制备供试品溶液,

在"3.2"项色谱条件下进样,以共有峰的3号峰(地骨皮 乙素)作为内标[13],测得共有峰相对保留时间、相对峰面 积 RSD 分别为 0.06% ~ 0.32% 、1.21% ~ 2.81% ,表明该方 法重复性良好。

3.3.3 稳定性试验 取同一批供试品溶液 (批号 YC20190101), 于 0、2、4、8、12、24 h 在 "3.2" 项色谱 条件下进样,以共有峰的3号峰(地骨皮乙素)作为内 标[13],测得共有峰相对保留时间、相对峰面积 RSD 分别为 0.05%~1.36%、0.40%~2.70%,表明供试品溶液在24 h 内稳定性良好。

3.4 图谱生成 取21 批供试品溶液,按"3.1"项下方法 制备供试品溶液,在"3.2"项色谱条件下进样,色谱图见 图 2。

3(S)

3. 地骨皮乙素 4. 地骨皮甲素

图 2 21 批样品对照图谱及 HPLC 指纹图谱

3.5 相似度分析 将各批药材的 HPLC 色谱图导入"中药色谱指纹图谱相似度评价系统"(2.0版)^[13],生成对照图谱(图2),标定了5个特征峰。利用中药指纹图谱相似度评价系统软件进行计算,结果各批样品相似度均大于0.97。张永等^[14]在研究肉桂指纹图谱时发现,桂皮醛过高的峰面积使得不同年限肉桂药材的相似度没有明显差别,故本研究剔除最大峰地骨皮乙素重新计算,结果见表4。由此可知,除编号 S18、S19 相似度小于 0.80 外,其余各批相似度均大于 0.8。

表 4 剔除地骨皮乙素后 21 批样品相似度分析

编号	相似度	编号	相似度
S1	0. 997	S12	0. 941
S2	0. 998	S13	0. 874
S3	0. 911	S14	0. 979
S4	0. 997	S15	0. 823
S5	0. 945	S16	0. 991
S6	0. 959	S17	0. 967
S7	0. 943	S18	0. 642
S8	0. 949	S19	0. 766
S9	0. 954	S20	0. 866
S10	0. 922	S21	0. 900
S11	0. 991	对照	1.000

3.6 聚类分析 聚类分析是以一定分析手段将关系相近的 研究对象进行合理的分类的综合性手段之一^[15]。将上述 21 批样品 5 个特有峰的峰面积导入 SPSS 21.0 软件,采用组间 平均数连接法和夹角余弦对 21 批样品的 5 个特征峰进行系统聚类分析,结果见图 3,可知结果与相似度分析一致。

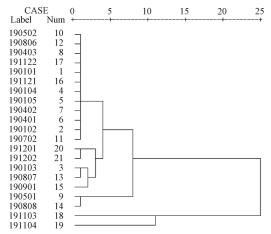


图 3 21 批地骨皮系统聚类分析图

4 地骨皮灰分检测

总灰分指药材经加热炽灼灰分遗留下的无机物,称定质量,判断是否符合限度规定,它是生理灰分与外来灰分之和^[16]。组织中含草酸钙较多的药材,需要测定酸不溶性灰分,可以更准确地反映出外来杂质的量^[16]。

灰分测定参照 2015 年版《中国药典》四部通则测定法进行,取 21 批药材粉末(过 2 号筛),每批约 4.0 g,精密称定,置于恒定质量的空坩埚中,放入马弗炉中程序升温,

灰化完全后取出,冷却后记录数据,复烘 0.5 h,直至数据 达到恒重的要求,结果见表 5。

表 5 21 批样品灰分测定结果

批号	来源	总灰分/%	酸不溶性灰分/%
YC20190101	山西运城夏县	14. 39	2. 81
YC20190102	河南开封尉氏县	13.30	5. 56
YC20190103	河南许昌鄢陵县	12.86	4. 78
YC20190104	河南郑州新密市	11. 24	4. 26
YC20190105	山西大同浑源县	17.04	3. 67
YC20190401	甘肃兰州榆中县	16. 74	2. 61
YC20190402	甘肃白银靖远县	16. 58	2. 72
YC20190403	河南三门峡灵宝市	15.71	2. 02
YC20190501	甘肃定西陇西县	17. 21	1.51
YC20190502	甘肃天水秦安县	12.08	1. 96
YC20190702	甘肃兰州永登县	15.77	2. 44
YC20190806	陕西渭南澄城县	11.76	0. 45
YC20190807	甘肃平凉静宁县	12. 20	2. 17
YC20190808	宁夏固原彭阳县	19.67	1. 14
YC20190901	甘肃天水甘谷县	14. 13	2. 58
YC20191121	甘肃天水武山县	16.08	2. 67
YC20191122	甘肃庆阳宁县	16.08	2. 19
YC20191103	甘肃兰州西固区	13. 13	0. 43
YC20191104	甘肃陇南武都区	10. 39	0. 13
YC20191201	甘肃天水武山县	11.35	0. 63
YC20191202	山西运城闻喜县	11.36	0. 61

2015 年版《中国药典》一部地骨皮项下规定,灰分不得大于11%,酸不溶性灰分不得大于3%^[1]。表5显示,20批样品灰分均大于11%,仅1批(YC20191104)合格,但是该批有效成分含量低(0.33%),可能是过度水洗导致。《香港中药材标准》第六册地骨皮项下^[12]规定,总灰分不得多于19%,酸不溶性灰分不得多于4.5%;第17版《日本药典》地骨皮项下^[17]规定,总灰分不得多于20.0%,酸不溶性灰分不得多于3.0%。地骨皮灰分与有效成分含量的关系,见图4,由S13~S21数据可知,当地骨皮中总灰分和酸不溶性灰分降低时,地骨皮乙素含量显著降低,故建议2020年版《中国药典》对地骨皮灰分限量进行调整,总灰分不超过19.0%,酸不溶性灰分不多于4.5%。

5 讨论与结论

本实验选用了甲醇-水、乙腈-水、甲醇-0.1%甲酸、甲醇-0.1%三氟乙酸、甲醇-0.1%磷酸作为流动相进行考察,最终确定"2.1"项下条件,色谱图上各色谱峰分离良好,保留时间适中,峰型对称。

由于 2015 版《中国药典》上对地骨皮灰分做了控制,但是并没有对其指标性成分进行说明。因为地骨皮外皮具有较厚的糠磷皮,其中有细密的组织小孔及不规则裂纹,很容易吸附灰尘,所以灰分不容易达标,但浸泡或多次洗涤又会显著降低其有效成分含量。本实验建立了地骨皮样品中地骨皮乙素含量测定方法,建议 2020 年版《中国药

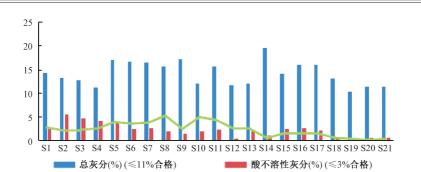


图 4 地骨皮灰分与地骨皮乙素含量的关系

典》中增加地骨皮含量测定项,按干燥品计算,本品含地骨皮乙素 $(C_{28}H_{42}N_4O_6)$ 不低于 1.0%,并对其灰分限量进行调整,总灰分不超过 19.0%,酸不溶性灰分不多于 4.5%。

地骨皮乙素含量(%)

本实验建立了地骨皮药材的对照指纹图谱,确定了5个共有峰作为基本特征峰。在相似度分析时,应剔除对指纹图谱贡献率较大的地骨皮乙素峰,以利于指纹图谱的综合评价,根据聚类分析结果,将21批样品划分为2大类,具体分类形成原因有待进一步研究。

参考文献:

- [1] 国家药典委员会. 中华人民共和国药典: 2015 版一部[S]. 北京: 中国医药科技出版社, 2015: 124.
- [2] 卢有媛,郭 盛,张 芳,等. 枸杞属药用植物资源系统利用与产业化开发[J]. 中国现代中药, 2019, 21(1): 29-36.
- [3] 钱 丹,纪瑞锋,郭 威,等.中国枸杞属种间亲缘关系和栽培枸杞起源研究进展[J].中国中药杂志,2017,42(17):3282-3285.
- [4] 徐国钧,徐珞珊,王峥涛.常用中药材品种整理和质量研究 (南方协作组)(第三册)[M].福州:福建科学技术出版 社,1994.
- [5] 魏智清,于洪川,杨 涓.不同产地地骨皮降血糖作用的研究[J].四川中医,2009,27(6):51-53.
- [6] 袁 媛. 中药地骨皮化学成分、含量测定及药理活性研究 进展[J]. 中医药临床杂志, 2018, 30(11); 2131-2134.

- [7] 苏 磊,姜艳艳,陈路晓,等. 地骨皮中咖啡酰丁二胺、地骨皮乙素和绿原酸含量测定方法研究[J]. 北京中医药大学学报,2018,41(5):400-404.
- [8] 郑 江,刘 鑫,郑新川,等. 苦柯胺 A 和苦柯胺 B 的用途:中国, CN101829075A[P]. 2010-09-15.
- [9] 杨景程,刘 鑫,郑新川,等. 苦柯胺 B 拮抗细菌内毒素和 CpG DNA 的实验研究[J]. 第三军医大学学报, 2012, 34 (11): 1062-1066.
- [10] 张秀云,周凤琴. 地骨皮药效成分及临床应用研究进展[J]. 山东中医药大学学报,2012,36(3):243-244.
- [11] 陈倩倩, 邬丽琴, 郝丽霞, 等. 47 批次地骨皮药材的真伪鉴别及质量分析[J]. 北方药学, 2019, 16(8): 11-12.
- [12] 香港特别行政区政府卫生署中医药事务部. 香港中药材标准第六册[S]. 2013; 523-533.
- [13] 刘 伟,郭 蕾,崔永霞,等. 野生与栽培地骨皮药材 HPLC 指纹图谱的研究 [J]. 中成药, 2010, 32 (12): 2032-2035.
- [14] 张 永,丁 越,张 彤,等.高效液相色谱指纹图谱结合 化学计量方法评价不同生长年限肉桂药材[J].中成药, 2021,43(2):543-546.
- [15] 徐 妍,杨华蕊,杨永寿,等.中药指纹图谱研究现状及展望[J].世界最新医学信息文摘,2018,18(76):91-94.
- [16] 吕丽娟, 刘淑聪, 龚宁波, 等. 穿山龙等 3 种中药材的总灰分定值分析方法研究 [J]. 中国药房, 2010, 21(19): 1779-1781.
- [17] 日本药局方编辑委员会. 日本药典 JP17[S]. 2016: 1909.